
The Design and Implementation of a Scalable DL
Benchmarking Platform

Cheng Li∗
University of Illinois Urbana-Champaign

Urbana, Illinois
cli99@illinois.edu

Abdul Dakkak∗
University of Illinois Urbana-Champaign

Urbana, Illinois
dakkak@illinois.edu

Jinjun Xiong
IBM T. J. Watson Research Center
Yorktown Heights, New York

jinjun@us.ibm.com

Wen-mei Hwu
University of Illinois Urbana-Champaign

Urbana, Illinois
w-hwu@illinois.edu

Abstract
The current Deep Learning (DL) landscape is fast-paced
and is rife with non-uniform models, hardware/software
(HW/SW) stacks, but lacks a DL benchmarking platform to
facilitate evaluation and comparison of DL innovations, be it
models, frameworks, libraries, or hardware. Due to the lack
of a benchmarking platform, the current practice of evaluat-
ing the benefits of proposed DL innovations is both arduous
and error-prone — stifling the adoption of the innovations.

In this work, we first identify 10 design features which are
desirable within a DL benchmarking platform. These features
include: performing the evaluation in a consistent, repro-
ducible, and scalable manner, being framework and hardware
agnostic, supporting real-world benchmarking workloads,
providing in-depth model execution inspection across the
HW/SW stack levels, etc. We then propose MLModelScope,
a DL benchmarking platform design that realizes the 10
objectives. MLModelScope proposes a specification to de-
fine DL model evaluations and techniques to provision the
evaluation workflow using the user-specified HW/SW stack.
MLModelScope defines abstractions for frameworks and sup-
ports board range of DLmodels and evaluation scenarios. We
implement MLModelScope as an open-source project with
support for all major frameworks and hardware architec-
tures. Through MLModelScope’s evaluation and automated
analysis workflows, we performed case-study analyses of 37
models across 4 systems and show how model, hardware,
and framework selection affects model accuracy and perfor-
mance under different benchmarking scenarios. We further
demonstrated how MLModelScope’s tracing capability gives
a holistic view of model execution and helps pinpoint bottle-
necks.

1 Introduction
The emergence of Deep Learning (DL) as a popular applica-
tion domain has led to many innovations. Every day, diverse
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DL models, as well as hardware/software (HW/SW) solu-
tions, are proposed — be it algorithms, frameworks, libraries,
compilers, or hardware. DL innovations are introduced at
such a rapid pace [10] that being able to evaluate and com-
pare these innovations in a timely manner is critical for their
adoption. As a result, there have been concerted community
efforts in developingDL benchmark suites [1, 6, 14, 24] where
common models are selected and curated as benchmarks.

DL benchmark suites require significant effort to develop
and maintain and thus have limited coverage of models (usu-
ally a few models are chosen to represent a DL task). Within
these benchmark suites, model benchmarks are often devel-
oped independently as a set of ad-hoc scripts. To consistently
evaluate two models requires one to use the same evaluation
code andHW/SW environment. Since themodel benchmarks
are ad-hoc scripts, a fair comparison requires a non-trivial
amount of effort. Furthermore, DL benchmarking often re-
quires evaluating models across different combinations of
HW/SW stacks. As HW/SW stacks are increasingly being
proposed, there is an urging need for a DL benchmarking
platform that consistently evaluates and compares different
DL models across HW/SW stacks, while coping with the
fast-paced and diverse landscape of DL.

As a fledgling field, the benchmarking platform design for
DL faces new challenges and requirements. DL model eval-
uation is a complex process where the model and HW/SW
stack must work in unison, and the benefit of a DL innova-
tion is dependent on this interplay. Currently, there is no
standard to specify or provision DL evaluations, and repro-
ducibility is a significant “pain-point” within the DL commu-
nity [15, 23, 31]. Thus, the benchmarking platform design
must guarantee a F1 reproducible evaluation along with
F2 consistent evaluation.
Aside from F1-2 , the design should: be F3 frameworks

and hardware agnostic to support model evaluation using
diverse HW/SW stacks; be capable of performing F4 scal-
able evaluation across systems to cope with the large num-
ber of evaluations due to the diverse model/HW/SW com-
binations; support different F7 benchmarking scenarios
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which mimic the real-world workload exhibited in online,
offline, and interactive applications; have a F8 benchmark-
ing analysis and reportingworkflowwhich analyzes bench-
marking results across evaluation runs and generates sum-
mary reports; enable F9 model execution inspection to
identify bottleneckswithin amodel-, framework-, and system-
level components. Other features such as: F5 artifact ver-
sioning, F6 efficient evaluationworkflow, and F10 dif-
ferent user interfaces are also desirable to increase the
design’s scalability and usability. We discuss the design ob-
jectives in detail in Section 3.
In this paper, we propose MLModelScope, a scalable DL

benchmarking platform design that realizes the above 10
objectives and facilitates benchmarking, comparison, and un-
derstanding of DLmodel executions.MLModelScope achieves
the design objectives by proposing a specification to define
DL model evaluations; introducing techniques to consume
the specification and provision the evaluation workflow us-
ing the specified HW/SW stack; using a distributed scheme
to manage, schedule, and handle model evaluation requests;
supporting pluggable workload generators; defining com-
mon abstraction API across frameworks; providing across-
stack tracing capability that allows users to inspect model
execution at different HW/SW abstraction levels; defining
an automated evaluation analysis workflow for analyzing
and reporting evaluation results; and, finally, exposing the
capabilities through a web and command-line interface.
We implement MLModelScope and integrate it with the

Caffe [21], Caffe2 [20], CNTK [34], MXNet [4], PyTorch [29],
TensorFlow [40], TensorFlow Lite [37], and TensorRT [5]
frameworks. MLModelScope runs on ARM, PowerPC, and
x86 and supports CPU, GPU, and FPGA execution. We boot-
strap MLModelScope with over 300 built-in models cover-
ing different DL tasks such as image classification, object
detection, semantic segmentation, etc. MLModelScope is
open-source, extensible, and customizable — coping with the
fast-paced DL landscape. To the authors’ knowledge, this
paper is the first to describe the design and implementation
of a scalable DL benchmarking platform.

We showcase MLModelScope’s benchmarking, inspection,
and analysis capabilities using several case studies. We use
MLModelScope to evaluate 37 DL models and systematically
compare their performance using 4 systems under differ-
ent benchmarking scenarios. We perform comparisons to
understand the correlation between a model’s accuracy, its
size, and its achieved latency and maximum throughput. We
then use MLModelScope’s tracing capability to identify the
bottlenecks of the evaluation and use its “zoom-in” feature
to inspect the model execution at different HW/SW levels.
We demonstrate how, using the analysis workflow, users
can easily digest the evaluation results produced by MLMod-
elScope to understand model-, framework-, and system-level
bottlenecks.

This paper describes the design and implementation of
MLModelScope and is structured as follows. Section 2 gives
a background. Section 3 describes the objectives of MLMod-
elScope. Section 4 proposes the MLModelScope design which
addresses these objectives and describes its implementa-
tion. Section 5 performs in-depth evaluations using MLMod-
elScope. Section 6 details related work before we conclude
in Section 7.

2 Background
This section gives a brief background of DLmodel evaluation
and current DL benchmarking practice.

2.1 DL Model Evaluation Pipeline
ADLmodel evaluation pipeline performs input pre-processing,
followed by model prediction and output post-processing
(Figure 3). Pre-processing is the process of transforming the
user input into a form that can be consumed by themodel and
post-processing is the process of transforming the model’s
output to compute metrics. If we take image classification as
an example, the pre-processing step decodes the input image
into a tensor of dimensions [batch, heiдht ,width, channel]
([N ,H ,W ,C]), then performs resizing, normalization, etc.
The image classification model’s output is a tensor of dimen-
sions [batch ∗ numClasses] which is sorted to get the top K
predictions (label with probability). A DL model is defined
by its graph topology and its weights. The graph topology
is defined as a set of nodes where each node is a function
operator with the implementation provided by a framework
(e.g. TensorFlow, MXNet, PyTorch). The framework acts as
a “runtime” for the model prediction and maps the func-
tion operators into system library calls. As can be observed,
this pipeline is intricate and has many levels of abstraction.
When a slowdown is observed, any one of these levels of
abstraction can be suspect.

2.2 Current DL Benchmarking
While there has been a drive to provide reference DL bench-
marks [1, 14, 24], the current benchmarking effort is still
scattered, lacks a standard benchmarking methodology, and
revolves around a series of scripts that evaluate a model
on a local system. To consistently evaluate two models in-
volves: instantiating the same hardware; installing the same
software packages and their dependencies; and, finally, mea-
suring and analyzing the results of both models in the same
way. Because of the use of ad-hoc scripts and lack of a stan-
dard way to evaluate models, the above process requires a
lot of manual work, and can be error-prone — often result-
ing in non-reproducible [15, 17, 23] benchmarking results.
Due to the daunting effort to perform fair benchmarking, DL
innovations proposed have outpaced researchers’ ability to
compare and analyze them [10].
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Figure 1. The MLModelScope design and workflows.

3 Design Objectives
In this section, we detail 10 objectives for a DL benchmarking
platform design to cope with the fast-evolving DL landscape.
These objectives informed MLModelScope’s design choices.

F1 Reproducible Evaluation — Model evaluation is
a complex process where the model, dataset, evaluation
method, and HW/SW stack must work in unison to main-
tain the accuracy and performance claims. Currently, model
authors distribute their models and code (usually ad-hoc
scripts) by publishing them to public repositories such as
GitHub. Due to the lack of standard specification, model au-
thors may under-specify or omit key aspects of model eval-
uation. As a consequence, reproducibility is a “pain-point”
within the DL community [15, 17, 19, 23, 31, 36]. Thus, all
aspects of a model evaluation must be specified and pro-
visioned by the platform design to guarantee reproducible
evaluation.

F2 Consistent Evaluation — The current practice of
publishing models and code also poses challenges to consis-
tent evaluation. The ad-hoc scripts usually have a tight cou-
pling between model execution and the underlying HW/SW
components, making it difficult to quantify or isolate the
benefits of an individual component (be it model, frame-
work, or other SW/HW components). A fair apple-to-apple
comparison between model executions requires a consis-
tent evaluation methodology rather than running ad-hoc
scripts for each. Thus the design should have a well-defined

benchmarking specification for all models and maximize the
common code base that drives model evaluations.

F3 Framework/Hardware Agnostic — The DL land-
scape is diverse and there are many DL frameworks (e.g.
TensorFlow, MXNet, PyTorch) and hardware (e.g. CPU, GPU,
FPGA). Each has its own use scenarios, features, and per-
formance characteristics. To have broad support of model
evaluation, the design must support different frameworks
and hardware. Furthermore, the designmust be valid without
modifications to the frameworks.

F4 Scalable Evaluation—DL innovations, such as mod-
els, frameworks, libraries, compilers, and hardware acceler-
ators are introduced at a rapid pace [10, 18]. Being able to
quickly evaluate and compare the benefits of DL innovations
is critical for their adoption. Thus the ability to perform DL
evaluations with different model/HW/SW setups in parallel
and have a centralized management of the benchmarking
results is highly desired. For example, choosing the best hard-
ware out of N candidates for a model is ideally performed in
parallel and the results should be automatically gathered for
comparison.

F5 Artifact Versioning — DL frameworks are continu-
ously updated by the DL community, e.g. the recent versions
TensorFlow at the time of writing are v1.15 and v2.0. There
are many unofficial variants of models, frameworks, and
datasets as researchers might update or modify them to suite
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their respective needs. To enable management and compari-
son of model evaluations using different DL artifacts (models,
frameworks, and datasets), the artifacts used for evaluation
within a benchmarking platform should be versioned.

F6 Efficient Evaluation Workflow — Before model in-
ference can be performed, the input data has to be loaded
into memory and the pre-processing stage transforms it into
a form that the model expects. After the model prediction,
the post-processing stage transforms the model’s output(s)
to a form that can be used to compute metrics. The input data
loading and pre-/post-processing can take a non-negligible
amount of time, and become a limiting factor for quick eval-
uations [9]. Thus the design should handle and process data
efficiently in the evaluation workflow.

F7 Benchmarking Scenarios — DL benchmarking is
performed under specific scenarios. These scenarios mimic
the usage of DL in online, offline, or interactive applications
on mobile, edge, or cloud systems. The design should sup-
port common inference scenarios and be flexible to support
custom or emerging workloads as well.

F8 Benchmarking Analysis and Reporting — Bench-
marking produces raw data which needs to be correlated and
analyzed to produce human-readable results. An automated
mechanism to summarize and visualize these results within
a benchmarking platform can help users quickly understand
and compare the results. Therefore, the design should have
a benchmarking result analysis and reporting workflow.

F9 Model Execution Inspection — Benchmarking is
often followed by performance optimization. However, the
complexity of DL model evaluation makes performance de-
bugging challenging as each level within the HW/SW ab-
straction hierarchy can be a suspect when things go awry.
Current model execution inspection methods rely on the
use of a concoction of profiling tools (e.g. Nvidia’s Nsight
System or Intel’s Vtune). Each profiling tool captures a spe-
cific aspect of the HW/SW stack and researchers manually
correlate the results to get an across-stack view of the model
execution profile. To ease inspecting model execution bot-
tlenecks, the benchmarking platform design should provide
tracing capability at all levels of HW/SW stack.

F10 Different User Interfaces —While the command-
line is the most common interface in the current benchmark-
ing suites, having other UIs, such as web UI, to accommo-
date other use cases can greatly boost productivity. While
a command-line interface is often used in scripts to quickly
perform combinational evaluations across models, frame-
works, and systems, a web UI, on the other hand, can serve
as a “push-button” solution to benchmarking and provides
an intuitive flow for specifying, managing evaluations, and
visualizing benchmarking results. Thus the design should
provide UIs for different use cases.

1 name: MLPerf_ResNet50_v1 .5 # model name
2 version: 1.0.0 # semantic version of the model
3 description: ...
4 framework: # framework information
5 name: TensorFlow
6 version: ' >=1.12.0 <2.0' # framework ver constraint
7 inputs: # model inputs
8 - type: image # first input modality
9 layer_name: 'input_tensor '
10 element_type: float32
11 steps: # pre -processing steps
12 - decode:
13 data_layout: NHWC
14 color_mode: RGB
15 - resize:
16 dimensions: [3, 224, 224]
17 method: bilinear
18 keep_aspect_ratio: true
19 - normalize:
20 mean: [123.68 , 116.78 , 103.94]
21 rescale: 1.0
22 outputs: # model outputs
23 - type: probability # first output modality
24 layer_name: prob
25 element_type: float32
26 steps: # post -processing steps
27 - argsort:
28 labels_url: https://.../ synset.txt
29 preprocess: [[code]]
30 postprocess: [[code]]
31 model: # model sources
32 base_url: https:// zenodo.org/record /2535873/ files/
33 graph_path: resnet50_v1.pb
34 checksum: 7b94a2da05d ...23 a46bc08886
35 attributes: # extra model attributes
36 training_dataset: # dataset used for training
37 - name: ImageNet
38 - version: 1.0.0

Listing 1.The MLPerf_ResNet50_v1.5’s model manifest
contains all information needed to run the model
evaluation using TensorFlow on CPUs or GPUs.

4 MLModelScope Design and
Implementation

We propose MLModelScope, a DL benchmarking platform
design that achieves the objectives F1-10 set out in Section 3.
To achieve F4 scalable evaluation, we designMLModelScope
as a distributed platform. To enable F7 real-world bench-
marking scenarios, MLModelScope deploys models to be
either evaluated using a cloud (as in model serving plat-
forms) or edge (as in local model inference) scenario. To
adapt to the fast pace of DL, MLModelScope is built as a
set of extensible and customizable modular components. We
briefly describe each component here and will delve into
how they are used later in this section. Figure 1 shows the
high level components which include:
• User Inputs — are the required inputs for model evalua-
tion including: a model manifest (a specification describing
how to evaluate a model), a framework manifest (a speci-
fication describing the software stack to use), the system
requirements (e.g. an X86 system with at least 32GB of RAM
and an NVIDIA V100 GPU), and the benchmarking scenario
to employ.
• Client — is either the web UI or command-line interface
which users use to supply their inputs and initiate the model
evaluation by sending a REST request to the MLModelScope
server.
• Server — acts on the client requests and performs REST
API handling, dispatching the model evaluation tasks to
MLModelScope agents, generating benchmark workloads
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based on benchmarking scenarios, and analyzing the evalua-
tion results.
• Agents — runs on different systems of interest and per-
formmodel evaluation based on requests sent by theMLMod-
elScope server. Each agent includes logic for downloading
model assets, performing input pre-processing, using the
framework predictor for inference, and performing post-
processing. An agent can be run within a container or as a
local process. Aside from the framework predictor, all code
within an agent is common across frameworks.
• Framework Predictor — is a wrapper around a frame-
work and provides a consistent interface across different DL
frameworks. The wrapper is designed as a thin abstraction
layer so that all DL frameworks can be easily integrated into
MLModelScope by exposing a limited number of common
APIs.
• Middleware — are a set of support services for MLMod-
elScope including: a distributed registry (a key-value store
containing entries of running agents and available models),
an evaluation database (a database containing evaluation re-
sults), a tracing server (a server to publish profile events cap-
tured during an evaluation), and an artifact storage server (a
data store repository containing model assets and datasets).
Figure 1 also shows MLModelScope’s three main work-

flows: i initialization, 1-9 evaluation, and a-e analysis. The
initialization workflow is one where all agents self-register
by populating the registry with their software stack, sys-
tem information, and available models for evaluation. The
evaluation workflow works as follows: 1 a user inputs the
desired model, software and hardware requirements, and
benchmarking scenario through a client interface. The 2
server then accepts the user request, resolves which agents
are capable of handling the request by 3 querying the dis-
tributed registry, and then 4 dispatches the request to one
or more of the resolved agents. The agent then 5 down-
loads the required evaluation assets from the artifact storage,
performs the evaluation, and 6-7 publishes the evaluation
results to the evaluation database and tracing server. A sum-
mary of the results is 8 sent to the server which 9 forwards
it to the client. Finally, the analysis workflow allows a user to
perform a more fine-grained and in-depth analysis of results
across evaluation runs. The MLModelScope server handles
this workflow by a-d querying the evaluation database and
performing analysis on the results, and e generating a de-
tailed analysis report for the user. This section describes the
MLModelScope components and workflows in detail.

4.1 User Input
All aspects of DL evaluation — model, software stack, sys-
tem, and benchmarking scenario — must be specified to
MLModelScope for it to enforce F1 reproducible and F2
consistent evaluation. To achieve this, MLModelScope de-
fines a benchmarking specification covering the 4 aspects

of evaluation. A model in MLModelScope is specified using
a model manifest, and a software stack is specified using
a framework manifest. The manifests are textual specifica-
tion in YAML [2] format. The system and benchmarking
scenario are user-specified options when the user initiates
an evaluation. The benchmarking specification is not tied
to a certain framework or hardware, thus enabling F3 . As
the model, software stack, system, and benchmarking sce-
nario specification are decoupled, one can easily evaluate
the different combinations, enabling F4 . For example, a user
can use the same MLPerf_ResNet50_v1.5 model manifest
(shown in Listing 1) to initiate evaluations across different
TensorFlow software stacks, systems, and benchmarking sce-
narios. To bootstrap the model evaluation process, MLMod-
elScope provides built-in model manifests which are embed-
ded in MLModelScope agents (Section 4.4). For these built-
in models, a user can specify the model and framework’s
name and version in place of the manifest for ease of use.
MLModelScope also provides ready-made Docker containers
to be used in the framework manifests. These containers are
hosted on Docker hub.

4.1.1 Model Manifest
The model manifest is a text file that specifies information
such as the model assets (graph and weights), the pre- and
post-processing steps, and other metadata used for evalua-
tion management. An example model manifest of ResNet50
v1.5 from MLPerf is shown in Listing 1. The manifest de-
scribes the model name (Lines 1-2), framework name and ver-
sion constraint (Lines 4-6), model inputs and pre-processing
steps (Lines 7-21), model outputs and post-processing steps
(Lines 22-28), custom pre- and post-processing functions
(Lines 29-30), model assets (Lines 31-34), and other metadata
attributes (Lines 35-38).

Framework Constraints — Models are dependent on
the framework and possibly the framework version. Users
can specify the framework constraints that a model can ex-
ecute on. For example, an ONNX model may work across
all frameworks and therefore has no constraint, but other
models may only work for TensorFlow versions greater than
1.2.0 but less than 2 (e.g. Lines 4–6 in Listing 1). This allows
MLModelScope to support models to target specific versions
of a framework and custom frameworks.

Pre- and Post-Processing — To perform pre- and post-
processing for model evaluation, arbitrary Python functions
can be placed within the model manifest (Lines |29| and |30| in
Listing 1). The pre- and post-processing functions are Python
functions which have the signature def fun(env, data).
The env contains metadata of the user input and data is a
PyObject representation of the user request for pre-process-
ing or the model’s output for post-processing. Internally,
MLModelScope executes the functions within a Python sub-
interpret-er [32] and passes the data arguments by reference.
The pre- and post-processing functions are general; i.e. the
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functions may import external Python modules or download
and invoke external scripts. By allowing arbitrary processing
functions, MLModelScope works with existing processing
codes and is capable of supporting arbitrary input/output
modalities.

Built-in Pre- and Post-Processing — An alternative
way of specifying pre- and post-processing is by defining
them as a series of built-in pre- and post-processing pipeline
steps (i.e. pipeline operators) within the model manifest. For
example, our MLModelScope implementation provides com-
mon pre-processing image operations (e.g. image decod-
ing, resizing, and normalization) and post-processing op-
erations (e.g. ArgSort, intersection over union, etc.) which
are widely used within vision models. Users can use these
built-in operators to define the pre- and post-processing
pipelines within the manifest without writing code. Users
define a pipeline by listing the operations within the man-
ifest code (e.g. Lines 7–21 in Listing 1 for pre-processing).
The pre- and post-processing steps are executed in the order
they are specified in the model manifest. The use of built-in
processing and function processing pipelines are mutually
exclusive.

Model Assets—The data required by the model are speci-
fied in themodelmanifest file; i.e. the graph (the graph_path)
and weights (the weights_path) fields. The model assets
can reside within MLModelScope’s artifact repository, on
the web, or the local file system of the MLModelScope agent.
If the model assets are remote, then they are downloaded
on demand and cached on the local file system. For frame-
works (such as TensorFlow and PyTorch) which use a single
file for both the model graph and weights (in deployment),
the weights field is omitted from the manifest. For example,
the TensorFlow ResNet50 v1.5 model assets in Listing 1
are stored on the Zenodo [41] website (Lines 31-34) and are
downloaded prior to evaluation.

4.1.2 Framework Manifest & System Requirements
The framework manifest is a text file that specifies the soft-
ware stack for model evaluation; an example framework
manifest is shown in Listing 2. As the core of the software
stack, the framework name and version constraints are spec-
ified. To maintain the software stack, and guarantee isola-
tion, the user can further specify docker containers using
the containers field. Multiple containers can be specified
to accommodate different systems (e.g. CPU or GPUs). At
the MLModelScope initialization phase ( i ), MLModelScope
agents (described in Section 4.4) register themselves by pub-
lishing their HW/SW stack information into the distributed
registry (described in Section 4.5.1). The MLModelScope
server uses this information during the agent resolution pro-
cess. The server finds MLModelScope agents satisfying the
user’s hardware specification and model/framework require-
ments. Evaluations are then run on one of (or, at the user
request, all of) the agents. If the user omits the framework

1 name: TensorFlow # framework name
2 version: 1.15.0 # semantic version of the framework
3 description: ...
4 containers: # containers
5 amd64:
6 cpu: carml/tensorflow:1-15-0_amd64 -cpu
7 gpu: carml/tensorflow:1-15-0_amd64 -gpu
8 ppc64le:
9 cpu: carml/tensorflow:1-15-0_ppc64le -cpu
10 gpu: carml/tensorflow:1-15-0_ppc64le -gpu

Listing 2. An example TensorFlow framework manifest,
which contains the software stacks (containers) to run
the model evaluation across CPUs or GPUs.

manifest in the user input, the MLModelScope server re-
solves the agent constraints using the model manifest and
system information. This allows MLModelScope to support
evaluation on FPGA systems which do not use containers.

4.1.3 Benchmarking Scenario
MLModelScope provides a set of built-in benchmarking sce-
narios. Users pick which scenario to evaluate under. The
benchmarking scenarios include batched inference and on-
line inference with a configurable distribution of time of
request (e.g. Poisson distribution of requests). The MLMod-
elScope server generates an inference request load based
on the benchmarking scenario option and sends it to the re-
solved agent(s) to measure the corresponding benchmarking
metrics of the model (detailed in Section 4.3).

4.2 MLModelScope Client
A user initiates a model 1 evacuation or a analysis though
the MLModelScope client. To enable F10 , the client can be
either a website or a command-line tool that users inter-
act with. The client communicates with the MLModelScope
server through REST API and sends user evaluation requests.
The web user interface allows users to specify a model evalu-
ation through simple clicks and is designed to help users who
do not have much DL experience. For example, for users not
familiar with the different models registered, MLModelScope
allows users to select models based on the application area
— this lowers the barrier of DL usage. The command-line
interface is provided for those interested in automating the
evaluation and profiling process. Users can develop other
clients that use the REST API to integrate MLModelScope
within their AI applications.

4.3 MLModelScope Server
The MLModelScope server interacts with the MLModelScope
client, agent, the middleware. It uses REST API to communi-
cate with the MLModelScope clients and middleware, and
gRPC (Listing 4) to interact with the MLModelScope agents.
To enforce F4 , the MLModelScope server can be load bal-
anced to avoid it being a bottleneck.
In the 1-9 evaluation workflow, the server is responsible

for 2 accepting tasks from the MLModelScope client, 3
6
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1 // Opens a predictor.
2 ModelHandle ModelLoad(OpenRequest);
3 // Close an open predictor.
4 Error ModelUnload(ModelHandle);
5 // Perform model inference on user data.
6 PredictResponse Predict(ModelHandle , PredictRequest , ←↩

PredictOptions);

Listing 3. The predictor interface consists of 3 API
functions.

querying the distributed registry and resolving the user-
specified constraints to find MLModelScope agents capable
of evaluating the request, 4 dispatching the evaluation task
to the resolved agent(s) and generating loads for the evalua-
tion, 8 collecting the evaluation summary from the agent(s),
and 9 returning the result summary to the client. The load
generator is placed on the server to avoid other programs in-
terfering with the evaluation being measured and to emulate
real-world scenarios such as cloud serving ( F7 ).
In the a-e analysis workflow, the server again a-b takes

the user input, but, rather than performing evaluation, it c
queries the evaluation database (Section 4.5.2), and then ag-
gregates and analyzes the evaluation results. MLModelScope
enables F8 through an across-stack analysis pipeline. It d
consumes the benchmarking results and the profiling traces
in the evaluation database and performs the analysis. Then
the server e sends the analysis result to the client. The
consistent profiling and automated analysis workflows in
MLModelScope allow users to systematically compare across
models, frameworks, and system offerings.

4.4 Agent and Framework Predictor
A MLModelScope agent is a model serving process that is
run on a system of interest (within a container or on bare
metal) and handles requests from the MLModelScope server.
MLModelScope agents continuously listen for jobs and com-
municate with the MLModelScope server through gRPC [16]
as shown in Listing 4. A framework predictor resides within a
MLModelScope agent and is a wrapper around a framework
and links to the framework’s C library.

During the initialization phase ( i ), aMLModelScope agent
publishes its built-in models and HW/SW information to
the MLModelScope distributed registry. To perform the as-
signed evaluation task, the agent first 5 downloads the re-
quired evaluation assets using the data manager, it then
executes the model evaluation pipeline which performs the
pre-processing, calls the framework’s predictor for inference
and then preforms the post-processing. If profiling is enabled,
the trace information is published to the 6 tracing server
to get aggregated into a single profiling trace. 7 the bench-
marked result and the profiling trace are published to the
evaluation database. Aside from the framework predictor,
all the other code — the data manager, pipeline executor,
and tracing hooks — are shared across agents for different
frameworks. While the default setup of MLModelScope is

to run each agent on a separate system, the design does not
preclude one from running agents on the same system as
separate processes.

4.4.1 Data Manager
The data manager manages the assets (e.g. dataset or model)
required by the evaluation as specified within the model
manifest. Assets can be hosted within MLModelScope’s arti-
fact repository, on the web, or reside in the local file system
of the MLModelScope agent. Both datasets and models are
downloaded by the data manager on demand if they are not
available on the local system. If the checksum is specified in
themodel manifest, the datamanager validates the checksum
of the asset before using a cached asset or after download-
ing the asset. Model assets are stored using the frameworks’
corresponding deployment format. For datasets, MLMod-
elScope supports the use of TensorFlow’s TFRecord [38] and
MXNet’s RecordIO [33]. These dataset formats are optimized
for static data and lays out the elements within the dataset
as contiguous binary data on disk to achieve better read
performance.

4.4.2 Pipeline Executor and Operators
To enable F6 efficient evaluation workflow, MLModelScope
leverages a streaming data processing pipeline design to
perform the model evaluation. The pipeline is composed
of pipeline operators which are mapped onto light-weight
threads to make efficient use multiple CPUs as well as to
overlap I/O with compute. Each operator within the pipeline
forms a producer-consumer relationship by receiving values
from the upstream operator(s) (via inbound streams), applies
the specified function on the incoming data and usually
producing new values, and propagates values downstream
(via outbound streams) to the next operator(s). The pre- and
post-processing operations, as well as the model inference,
form the operators within the model evaluation pipeline.

4.4.3 Framework Predictor
Frameworks provide different APIs (usually across program-
ming languages e.g. C/C++, Python, Java) to perform infer-
ence. To enable F2 consistent evaluation and maximize code
reuse, MLModelScope wraps each framework’s C inference
API. The wrapper is minimal and provides a uniform API
across frameworks for performing model loading, unloading,
and inference. This wrapper is called the predictor interface
and is shown in Listing 3. MLModelScope does not require
modifications to a framework and thus pre-compiled binary
versions of frameworks (e.g. distributed through Python’s
pip) or customized versions of a framework work within
MLModelScope.

MLModelScope is designed to bind to the frameworks’ C
API to avoid the overhead of using scripting languages. We
demonstrate this overhead by comparing model inference
using Python and the C API. We used TensorFlow 1.13.0
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Figure 2. The tf.Session.Run execution time (normalized
to C) across batch sizes for Inception-v3 inference on CPU
and GPU using TensorFlow with C, Python using NumPy
arrays (NumPy), and Python using native lists (Python).

1 service Predict {
2 message PredictOptions {
3 enum TraceLevel {
4 NONE = 0;
5 MODEL = 1; // steps in the evaluation pipeline
6 FRAMEWORK = 2; // layers within the framework and above
7 SYSTEM = 3; // the system profilers and above
8 FULL = 4; // includes all of the above
9 }

10 TraceLevel trace_level = 1;
11 Options options = 2;
12 }
13 message OpenRequest {
14 string model_name = 1;
15 string model_version = 2;
16 string framework_name = 3;
17 string framework_version = 4;
18 string model_manifest = 5;
19 BenchmarkScenario benchmark_scenario = 6;
20 PredictOptions predict_options = 7;
21 }
22 // Opens a predictor and returns a PredictorHandle.
23 rpc Open(OpenRequest) returns (PredictorHandle){}
24 // Close a predictor and clear its memory.
25 rpc Close(PredictorHandle) returns (CloseResponse) {}
26 // Predict receives a stream of user data and runs
27 // the predictor on each element of the data according
28 // to the provided benchmark scenario.
29 rpc Predict(PredictorHandlePredictorHandle , UserInput) ←↩

returns (FeaturesResponse) {}
30 }

Listing 4. MLModelScope’s minimal gRPC interface in
protocol buffer format.

compiled from source with cuDNN 7.4 and CUDA Runtime
10.0.1 on the Tesla_V100 system (Amazon EC2 P3 instance)
in Table 1. Figure 2 shows the normalized inference latency
across language environments on GPUs and CPUs across
batch sizes. On CPU, using Python is 64% and NumPy is
15% slower than C; whereas on GPU Python is 3 − 11× and
NumPy is 10% slower than C. For Python, the overhead
is proportional to the input size and is due to TensorFlow
internally having to unbox the Python linked list objects and
create a numeric buffer that can be used by the C code. The
unboxing is not needed for NumPy since TensorFlow can
use NumPy’s internal numeric buffer directly. By using the C
API directly, MLModelScope can elide measuring overheads
due to language binding or scripting language use.

MLModelScope design supports agents onASIC and FPGA.
Any code implementing the predictor interface shown in
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Figure 3. The model inference is defined by the pre-
processing, prediction, and post-processing pipeline. A
framework executes a model through a network-layer execu-
tion pipeline. Layers executed by a framework are pipelines
of system library calls. The system libraries, in turn, invoke
a chain of primitive kernels that impact the underlying hard-
ware counters.

Listing 3 is a valid MLModelScope predictor. This means that
FPGA and ASIC hardware, which do not have a framework
per se, can be exposed as a predictor. For example, for an
FPGA the Open function call loads a bitfile into the FPGA,
the Close unloads it, and the Predict runs the inference on
the FPGA. Except for implementing these 3 API functions,
no code needs to change for the FPGA to be exposed to
MLModelScope.

4.4.4 Tracing Hooks
To enable F9 , MLModelScope leverages distributed trac-
ing [35] and captures the profiles at different levels of gran-
ularity (model-, framework-, and system-level as shown in
Figure 3) using the tracing hooks. A tracing hook is a pair of
start and end code snippets and follows the standards [28]
to capture an interval of time. The captured time interval
along with the context and metadata is called a trace event.
and is published to the MLModelScope tracer server (Sec-
tion 4.5.3). Trace events are published asynchronously to the
MLModelScope tracing server, where they are aggregated
using the timestamp and context information into a single
end-to-end timeline. The timestamps of trace events do no
need to reflect the actual wall clock time, for example, users
may integrate a system simulator and publish simulated time
rather than wall-clock time to the tracing server.

Model-level — Tracing hooks are automatically placed
around each pipeline operator within the model evaluation
pipeline. For example, the tracing hook around the model
inference step measures the inference latency.

8
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Framework-level—The tracing hooks at the framework-
level leverage the DL frameworks’ existing profiling capa-
bilities and does not require modification to the framework
source code. For TensorFlow, this option is controlled by the
RunOptions.TraceLevel setting which is passed to the TF_-
SessionRun function. In MXNet, the MXSetProfilerState
function toggles the layer profiling. Similar mechanisms ex-
ist for other frameworks such as Caffe, Caffe2, PyTorch, and
TensorRT. The framework’s profile representation is con-
verted and is then published to the tracer server.

System-level — The tracing hooks at the system-level
integrate with hardware and system-level profiling libraries
to capture fine-grained performance information — CPU
and GPU profiles, system traces, and hardware performance
counters. For example, the performance counters on systems
are captured through integration with PAPI [3] and Linux
perf [30] while the GPU profile is captured by integrating
with NVIDIA’s NVML [26] and CUPTI [8]. Since overhead
can be high for system-level profiling, the user can selectively
enable/disable the integrated profilers.

The trace level is a user-specified option (part of the bench-
marking scenario) and allows one to get a hierarchical view
of the execution profile. For example, a user can enable
model- and framework-level profiling by setting the trace
level to framework, or can disable the profiling all together
by setting the trace level to none. Through MLModelScope’s
trace, a user can get a holistic view of the model evaluation
to identify bottlenecks at each level of inference.

4.5 Middleware
The MLModelScope middleware layer is composed of ser-
vices and utilities that support the MLModelScope Server
in orchestrating model evaluations and the MLModelScope
agents in provisioning, monitoring, and aggregating the exe-
cution of the agents.

4.5.1 Distributed Registry
MLModelScope leverages a distributed key-value store to
store the registered model manifests and running agents,
referred to as the distributed registry. MLModelScope uses
the registry to facilitate the discovery of models, solve user-
specified constraints for selecting MLModelScope agents,
and load balances the requests across agents. The registry is
dynamic — bothmodel manifests and predictors can be added
or deleted at runtime throughout the lifetime of MLMod-
elScope.

4.5.2 Evaluation Database
In the benchmarking workflow, after completing a model
evaluation, the MLModelScope agent uses the user input as
the key to store the benchmarking result and profiling trace
in the evaluation database. MLModelScope summarizes and
generates plots to aid in comparing the performance across
experiments. Users can view historical evaluations through

the website or command line using the input constraints.
Since the models are versioned, MLModelScope allows one
to track which model version produced the best result.

4.5.3 Tracing Server
The MLModelScope tracing server is a distributed tracing
server which accepts profiling data published by the MLMod-
elScope agent’s trace hooks (Section 4.4.4). Through the in-
novative use of distributed tracing (originally designed to
monitor distributed applications), MLModelScope joins pro-
filing results from different profiling tools and accepts in-
strumentation markers within application and library code.
All profiling data are incorporated into a single profiling
timeline. The aggregated profiling trace is consumed by the
MLModelScope analysis pipeline and also visualized sepa-
rately where the user can view the entire timeline and “zoom”
into a specific component as shown in Figure 3. As stated in
Section 4.4.4, user-specified options control the granularity
(model, framework, or system) of the trace events captured
(Lines 4 − 9 in Listing 4).

4.6 Extensibility and Customization
MLModelScope is built from a set of modular components
and is designed to be extensible and customizable. Users can
disable components, such as tracing, with a runtime option
or conditional compilation, for example. Users can extend
MLModelScope by adding models, frameworks, or tracing
hooks.

Adding Models — As models are defined through the
model manifest file, no coding is required to add models.
Once a model is added to MLModelScope, then it can be
used through its website, command line, or API interfaces.
Permissions can be set to control who can use or view a
model.

Adding Frameworks — To use new or custom versions
of a built-in framework requires no code modification but a
framework manifest as shown in Listing 2. To add support
for a new type of framework in MLModelScope, the user
needs to implement the framework wrapper and expose
the framework as a MLModelScope predictor. The predictor
interface is defined by a set of 3 functions — one to open a
model, another to perform the inference, and finally, one to
close the model — as shown in Listing 3. The auxiliary code
that forms an agent is common across frameworks and does
not need to be modified.

Adding Tracing Hooks — MLModelScope is configured
to capture a set of default system metrics using the system-
level tracing hooks. Users can configure these existing trac-
ing hooks to capture other system metrics. For example,
to limit profiling overhead, by default, the CUPTI tracing
hooks captures only some CUDA runtime API, GPU activi-
ties (kernels and memory copy), and GPU metrics. They can
be configured to capture other GPU activities and metrics, or
NVTX markers. Moreover, users can integrate other system
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profilers into MLModelScope by implementing the tracing
hook interface (Section 4.4.4).

4.7 Implementation
We implemented the MLModelScope design with support
for common frameworks and hardware. At the time of writ-
ing, MLModelScope has built-in support for Caffe, Caffe2,
CNTK, MXNet, PyTorch, TensorFlow, TensorFlow Lite, and
TensorRT. MLModelScope works with binary versions of
the frameworks (version distributed through Python’s pip,
for example) and support customized versions of the frame-
works with no code modification. MLModelScope has been
tested on X86, PowerPC, and ARMCPUs as well as NVIDIA’s
Kepler, Maxwell, Pascal, Volta, and Turing GPUs. It can also
evaluate models deployed on FPGAs. During the evaluation,
users can specify hardware constraints such as: whether to
run on CPU/GPU/FPGA, type of architecture, type of in-
terconnect, and minimum memory requirements — which
MLModelScope uses for agent resolution.

We populated MLModelScope with over 300 built-in mod-
els covering a wide array of inference tasks such as im-
age classification, object detection, segmentation, image en-
hancement, recommendation, etc.We verifiedMLModelScope’s
accuracy and performance results by evaluating the built-in
models and frameworks across representative systems and
comparing to those publicly reported. We maintain a run-
ning version of MLModelScope (omitting the web link due to
the blind review process) on a representative set of systems
along with the evaluation results of the built-in artifacts. It
serves as a portal for the public to evaluate and measure
the systems, and to contribute to MLModelScope’s artifacts.
Using the analysis pipeline, we automatically generated pro-
filing reports for hundreds of models across frameworks. The
analysis reports are published as web pages and a sample
is available at scalable20.mlmodelscope.org for the reader’s
inspection.

We implemented a MLModelScope web UI using the React
Javascript framework. The web UI interacts with a REST API
provided by the server. A video demoing the web UI usage
flow is available at https://bit.ly/2N9Z5wR. The REST API
can be used by other clients that wish to integrate MLMod-
elScope within their workflow. A MLModelScope command-
line client is also available and can be used within shell
scripts. The agents also expose a gRPC API which can be
used to perform queries to the agents directly.

5 Evaluation
Previous sections discussed in detail how MLModelScope’s
design and implementation achieves the F1-6 and F10 de-
sign objectives. In this section, we focus on evaluating how
MLModelScope handles F7 different benchmarking scenar-
ios, F8 result summarization, and F9 inspection of model
execution. We installed MLModelScope on the systems listed

in Table 1. Unless otherwise noted, all MLModelScope agents
are run within a docker container built on top of NVIDIA’s
TensorFlow NGC v19.06 docker image with the TensorFlow
v1.13.1 library. All evaluations were performed using the
command-line interface and are run in parallel across the
systems.

5.1 Benchmarking Scenarios
To show how MLModelScope helps users choose from dif-
ferent models and system offerings for the same DL task,
we compared the inference performance across the 37 Ten-
sorFlow models (shown in Table 2) and systems (shown
in Table 1) under different benchmark scenarios. For each
model, we measured its trimmed mean latency 1 and 90th
percentile latency in online (batch size = 1) inference sce-
nario, and the maximum throughput in batched inference
scenario on the AWS P3 system in Table 1. The model accu-
racy achieved using the ImageNet [11] validation dataset and
model size is listed. A model deployer can use this accuracy
and performance information to choose the best model on a
system given the accuracy and target latency or throughput
objectives.

Model Accuracy, Size, and Performance — We exam-
ined the relationship between the model accuracy and both
online latency (Figure 5) and maximum throughput (Figure
4). In both figures, the area of the circles is proportional to
the model’s graph size. In Figure 4 we find a limited corre-
lation between a model’s online latency and its accuracy —
models taking longer time to run do not necessarily achieve
higher accuracies; e.g. model 15 vs 22. While large models
tend to have longer online latencies, this is not always true;
e.g. model 14 is smaller in size but takes longer to run com-
pared to models 3, 5, 8, etc. Similarly, in Figure 5, we find
a limited correlation between a model’s accuracy and its
maximum throughput — two models with comparable maxi-
mum throughputs can achieve quite different accuracies; e.g.
models 2 and 17. Moreover, we see from both figures that the
graph size (which roughly represents the number of weight
values) is not directly correlated to either accuracy or perfor-
mance. Overall, models closer to the upper left corner (low
latency and high accuracy) in Figure 4 are favorable in the
online inference scenarios, and models closer to the upper
right corner (high throughput and high accuracy) in Figure 5
are favorable in the batched inference scenario. Users can
use this information to select the best model depending on
their objectives.

Model Throughput Scalability Across Batch Sizes —
When comparing the model online latency and maximum
throughput (Figures 4 and 5 respectively), we observed that
models which exhibit good online inference latency do not
1Trimmed mean is computed by removing 20% of the smallest
and largest elements and computing the mean of the residual; i.e.
TrimmedMean (l ist )) = Mean(Sort (l ist ) [ ⌊0.2 ∗ len(l ist )⌋:: − ⌊0.2 ∗
len(l ist )⌋]).
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Name CPU GPU
GPU

Architecture
GPU Theoretical
Flops (TFlops)

GPU Memory
Bandwidth (GB/s)

Cost
($/hr)

AWS P3 (2XLarge) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla V100-SXM2-16GB Volta 15.7 900 3.06
AWS G3 (XLarge) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla M60 Maxwell 9.6 320 0.90
AWS P2 (XLarge) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla K80 Kepler 5.6 480 0.75
IBM P8 IBM S822LC Power8 @ 3.5GHz Tesla P100-SXM2 Pascal 10.6 732 -

Table 1. Four systems with Volta, Pascal, Maxwell, and Kepler GPUs are selected for evaluation.

ID Name
Top 1

Accuracy
Graph Size

(MB)

Online
TrimmedMean
Latency (ms)

Online
90th Percentile
Latency (ms)

Max Throughput
(Inputs/Sec)

Optimal
Batch Size

1 Inception_ResNet_v2 80.40 214 23.95 24.2 346.6 128
2 Inception_v4 80.20 163 17.36 17.6 436.7 128
3 Inception_v3 78.00 91 9.2 9.48 811.0 64
4 ResNet_v2_152 77.80 231 14.44 14.65 466.8 256
5 ResNet_v2_101 77.00 170 10.31 10.55 671.7 256
6 ResNet_v1_152 76.80 230 13.67 13.9 541.3 256
7 MLPerf_ResNet50_v1.5 76.46 103 6.33 6.53 930.7 256
8 ResNet_v1_101 76.40 170 9.93 10.08 774.7 256
9 AI_Matrix_ResNet152 75.93 230 14.58 14.72 468.0 256
10 ResNet_v2_50 75.60 98 6.17 6.35 1,119.7 256
11 ResNet_v1_50 75.20 98 6.31 6.41 1,284.6 256
12 AI_Matrix_ResNet50 74.38 98 6.11 6.25 1,060.3 256
13 Inception_v2 73.90 43 6.28 6.56 2,032.0 128
14 AI_Matrix_DenseNet121 73.29 31 11.17 11.49 846.4 32
15 MLPerf_MobileNet_v1 71.68 17 2.46 2.66 2,576.4 128
16 VGG16 71.50 528 22.43 22.59 687.5 256
17 VGG19 71.10 548 23.0 23.31 593.4 256
18 MobileNet_v1_1.0_224 70.90 16 2.59 2.75 2,580.6 128
19 AI_Matrix_GoogleNet 70.01 27 5.43 5.55 2,464.5 128
20 MobileNet_v1_1.0_192 70.00 16 2.55 2.67 3,460.8 128
21 Inception_v1 69.80 26 5.27 5.41 2,576.6 128
22 BVLC_GoogLeNet 68.70 27 6.05 6.17 951.7 8
23 MobileNet_v1_0.75_224 68.40 10 2.48 2.61 3,183.7 64
24 MobileNet_v1_1.0_160 68.00 16 2.57 2.74 4,240.5 64
25 MobileNet_v1_0.75_192 67.20 10 2.42 2.6 4,187.8 64
26 MobileNet_v1_0.75_160 65.30 10 2.48 2.65 5,569.6 64
27 MobileNet_v1_1.0_128 65.20 16 2.29 2.46 6,743.2 64
28 MobileNet_v1_0.5_224 63.30 5.2 2.39 2.58 3,346.5 64
29 MobileNet_v1_0.75_128 62.10 10 2.3 2.47 8,378.4 64
30 MobileNet_v1_0.5_192 61.70 5.2 2.48 2.67 4,453.2 64
31 MobileNet_v1_0.5_160 59.10 5.2 2.42 2.58 6,148.7 64
32 BVLC_AlexNet 57.10 233 2.33 2.5 2,495.8 64
33 MobileNet_v1_0.5_128 56.30 5.2 2.21 2.33 8,924.0 64
34 MobileNet_v1_0.25_224 49.80 1.9 2.46 3.40 5,257.9 64
35 MobileNet_v1_0.25_192 47.70 1.9 2.44 2.6 7,135.7 64
36 MobileNet_v1_0.25_160 45.50 1.9 2.39 2.53 10,081.5 256
37 MobileNet_v1_0.25_128 41.50 1.9 2.28 2.46 10,707.6 256

Table 2. 37 pre-trained TensorFlow image classification models from MLPerf [24], AI-Matrix [1], and TensorFlow Slim are
used for evaluation and are sorted by accuracy. The graph size is the size of the frozen graph for a model. We measured the
online latency, 90th percentile latency, maximum throughput in batched inference at the optimal batch size for each model.

necessarily perform well in the batched inference scenario
where throughput is important. We measured how model
throughput scales with batch size (referred to as throughput
scalability) and present this model characteristic in Figure 6.
As shown, the throughput scalability varies across models.

Even models with similar network architectures can have
different throughput scalability — e.g. models 4 and 6, models
5 and 8, and models 10 and 11. In general, smaller models
tend to have better throughput scalability. However, there
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Figure 4. Accuracy vs online latency on AWS P3.
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Figure 5. Accuracy vs maximum throughput on AWS P3.
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Figure 6. The throughput speedup (over batch size 1)
heatmap across batch sizes on AWS P3 for the 37 models
in Table 2. The y−axis shows the batch size, whereas the
x−axis shows the model ID.

���� ��� ���� ��� ��� ���

��� ��� �� ������ ��� ���� ������ ���

� � � � ��

�
��

��
���

���
����

����� ����

�
�
��
�
�
�
�
�
��
�
�
�
(�
�
)

Figure 7. The batched latency of ResetNet 50 across the
GPUs and CPUs listed in Table 1.

are exceptions, for example, the VGG models (16 and 17) are
large and have good throughput scalability.

Model Performance Across Systems — Overall, the
ResNet_50 class of models offer a balance between model
size, accuracy, performance and are commonly used in prac-
tice. Thus we use ResNet_50 in online inference as an exam-
ple to show how to use MLModelScope to choose the best
system given a model. We evaluated ResNet_50 across all
CPUs and GPUs listed in Table 1 and the results are shown
in Figure 7. On the CPU side, IBM S822LC Power8 achieves
between 1.7× and 4.1× speedup over Intel Xeon E5-2686.
The P8 CPU is more performant than Xeon CPU [12], with
the P8 running at 3.5 GHz and having 10 cores each capable
of running 80 SMT threads. On the GPU side, as expected,
V100 GPU achieves the lowest latency followed by the P100.
The M60 GPU is 1.2× to 1.7× faster than the K80. When
this information is coupled with the pricing information of

the systems, one can determine which system is most cost-
efficient given a latency target and benchmarking scenario.
For example, given that K80 costs 0.90$/hr and M60 costs
0.75$/hr on AWS, we can tell that M60 is both more cost-
efficient and faster than K80 — thus, M60 is overall better
suited for ResNet_50 online inference when compared to
K80 on AWS.

5.2 Model Execution Inspection
MLModelScope’s evaluation inspection capability helps users
to understand the model execution and identify performance
bottlenecks. We show this by performing a case study of
“cold-start” inference (where the model needs to be loaded
into the memory before inference) of BVLC_AlexNet (ID =
32). The cold-start inference is common on low-memory sys-
tems and in serving schemes that perform one-off evaluation
(thus models do not persist in memory).

We choose BVLC_AlexNet because it is easy to see the
effects of the “cold-start” inference scenario using Caffe on
the AWS P3 and IBM P8 GPU systems with batch size 64.
The results are shown in Figure 8. We see that IBM P8 with
P100 GPU is more performant than AWS P3 which has V100
GPU. We used MLModelScope’s model execution inspection
capability to delve deeper into the model and to reveal the
reason. We “zoomed” into the longest-running layer (fc6)
and find that most of the time is spent performing copies
for the (fc6) layer weights. On AWS P3, the fc6 layer takes
39.44ms whereas it takes 32.4ms on IBM P8. This is due to
the IBM P8 system having an NVLink interconnect which
has a theoretical peak CPU to GPU bandwidth of 40 GB/s
(33 GB/s measured) while the AWS P3 system performs the
copy over PCIe-3 which has a maximum theoretical band-
width of 16 GB/s (12 GB/s measured). Therefore, despite P3’s
lower compute latency, we observed a lower overall layer
and model latency on the IBM P8 system due to the fc6 layer
being memory bound.
Using MLModelScope’s model execution inspection, it is

clear that the memory copy is the bottleneck for the “cold-
start” inference. To verify this observation, we examined
the Caffe source code. Caffe performs lazy memory copies
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Layer
Index

Layer
Name

Layer
Type Layer Shape Dominant GPU Kernel(s) Name

Latency
(ms)

Alloc Mem
(MB)

208 conv2d_48/Conv2D Conv2D ⟨256, 512, 7, 7⟩ volta_cgemm_32x32_tn 7.59 25.7
221 conv2d_51/Conv2D Conv2D ⟨256, 512, 7, 7⟩ volta_cgemm_32x32_tn 7.57 25.7
195 conv2d_45/Conv2D Conv2D ⟨256, 512, 7, 7⟩ volta_scudnn_128x128_relu_interior_nn_v1 5.67 25.7
3 conv2d/Conv2D Conv2D ⟨256, 64, 112, 112⟩ volta_scudnn_128x64_relu_interior_nn_v1 5.08 822.1

113 conv2d_26/Conv2D Conv2D ⟨256, 256, 14, 14⟩ volta_scudnn_128x64_relu_interior_nn_v1 4.67 51.4

Table 3. The ResNet 50 layer information using AWS P3 (Tesla V100 GPU) with batch size 256. The top 5most time-consuming
layers are summarized from the tracing profile. In total, there are 234 layers of which 143 take less than 1ms.

volta_sgemm_128x64_tn
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0 10 20 30 40

FC6
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Copy 144MB to GPU using PCIe3
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M
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Copy 144MB to GPU using NVLink

FC6
7.47ms

maxwell_sgemm_128x64_tn

gemmk1_kernel

conv fc normdropout softmax activation pooling computememcpy overhead
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ms
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Figure 8. The MLModelScope inspection of “cold-start”
BVLC_AlexNet inference with batch size 64 running Caffe
v0.8 using GPU on AWS P3 and IBM P8 (Table 1). The color-
coding of layers signify that they have the same type but
does not imply that the layer parameters are the same.

for layer weights just before execution. This causes com-
pute to stall while the weights are being copied — since the
weights of the FC layer are the biggest. A better strategy —
used by Caffe2, MXNet, TensorFlow, and TensorRT — is to
eagerly copy data asynchronously and utilize CUDA streams
to overlap compute with memory copies.

5.3 Benchmarking Analysis and Reporting
To showMLModelScope’s benchmarking analysis and report-
ing capability, we used MLModelScope’s analysis workflow
to perform an in-depth analysis of the 37 models. All results
were generated automatically using MLModelScope and fur-
ther results are available at scalable20.mlmodelscope.org for
the reader’s inspection. As an example, we highlight the
model-layer-GPU kernel analysis of ResNet_50 using batch
size 256 (the optimal batch size with the maximum through-
put) on AWS P3. MLModelScope can capture the layers in
a model and correlate the GPU kernels calls to each layer;
i.e. tell which GPU kernels are executed by a certain layer.
For example, layer index 208 is the most time-consuming
layer within the model and 7 GPU kernels are launched by
this layer: K1 volta_cgemm_32x32_tn taking 6.03 ms, K2
flip_filter taking 0.43 ms, K3 fft2d_r2c_16x16 taking
0.42ms, K4 fft2d_c2r_16x16 taking 0.25ms, K5 fft2d_-
r2c_16x16 taking 0.25 ms, K6 ShuffleInTensor3Simple
taking 0.06 ms, and K7 compute_gemm_pointers taking

0.004 ms. K1-5 and K7 are launched by the cuDNN to
perform convolution using the FFT algorithm [22]. K6 is
launched by TensorFlow and shuffles a layer shape based on a
permutation and is used by the TensorFlow convolution layer
to convert from TensorFlow’s filter format to the cuDNN
filter format. Table 3 shows the top 5 most time-consuming
layers of ResNet_50 as well as the dominant kernel (the ker-
nel with the highest latency) within each layer. Through the
analysis and summarization workflow, users can easily di-
gest the results and identify understand model-, framework-,
and system-level bottlenecks.

6 Related Work
To the authors’ knowledge, this the first paper to describe the
design and implementation of a scalable DL benchmarking
platform. While there have been efforts to develop certain
aspects of MLModelScope, the efforts have been quite dis-
persed and there has not been a cohesive system that ad-
dresses F1-10 . For example, while there is active work on
proposing benchmark suites, reference workloads, and analy-
sis [24, 42], they provide F7 a set of benchmarking scenarios
and a simple mechanism for F8 analysis and reporting of
the results. The models within these benchmarks can be
consumed by MLModelScope, and we have shown analysis
which uses the benchmark-provided models. Other work are
purely model serving platforms [7, 27] which address F4
scalable evaluation and possibly F5 artifact versioning but
nothing else. Finally, systems such as as [15, 25, 39] track the
model and data from their use in training til deployment and
can achieve F1 reproducible and F2 consistent evaluation.
To our knowledge, the most relevant work to MLMod-

elScope is FAI-PEP [13]. FAI-PEP is a DL benchmarking
platform targeted towards mobile devices. FAI-PEP aims
to solve F1–5 and has limited support of F8 (limited to
computing the nth percentile latency and displaying plot of
these analyzed latencies). No in-depth profiling and analysis
are available within their platform.

7 Conclusion and Future Work
A big hurdle in adopting DL innovations is to evaluate,
analyze, and compare their performance. This paper first
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identified 10 design objectives of a DL benchmarking plat-
form. It then described the design and implementation of
MLModelScope— an open-source DL benchmarking plat-
form that achieves these design objectives. MLModelScope
offers a unified and holistic way to evaluate and inspect
DL models, and provides an automated analysis and report-
ing workflow to summarize the results. We demonstrated
MLModelScope by using it to evaluate a set of models and
show how model, hardware, and framework selection affects
model accuracy and performance under different bench-
marking scenarios. We are actively working on curating
automated analysis and reports obtained through MLMod-
elScope, and a sample of the generated reports is available
at scalable20.mlmodelscope.org for the reader’s inspection.
We are further working on maintaining an online public
instance of MLModelScope where users can perform the
analysis presented without instantiating MLModelScope on
their system.
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