
DjiNN and Tonic: DNN as a Service
and Its Implications for Future Warehouse Scale Computers

Johann Hauswald Yiping Kang Michael A. Laurenzano Quan Chen Cheng Li
Trevor Mudge Ronald G. Dreslinski Jason Mars Lingjia Tang

Clarity Lab
University of Michigan - Ann Arbor, MI, USA

{jahausw, ypkang, mlaurenz, quanchen, elfchris, tnm, rdreslin, profmars, lingjia}@umich.edu

Abstract

As applications such as Apple Siri, Google Now, Microsoft
Cortana, and Amazon Echo continue to gain traction, web-
service companies are adopting large deep neural networks
(DNN) for machine learning challenges such as image process-
ing, speech recognition, natural language processing, among
others. A number of open questions arise as to the design of a
server platform specialized for DNN and how modern ware-
house scale computers (WSCs) should be outfitted to provide
DNN as a service for these applications.

In this paper, we present DjiNN, an open infrastructure for
DNN as a service in WSCs, and Tonic Suite, a suite of 7 end-
to-end applications that span image, speech, and language
processing. We use DjiNN to design a high throughput DNN
system based on massive GPU server designs and provide
insights as to the varying characteristics across applications.
After studying the throughput, bandwidth, and power proper-
ties of DjiNN and Tonic Suite, we investigate several design
points for future WSC architectures. We investigate the total
cost of ownership implications of having a WSC with a disag-
gregated GPU pool versus a WSC composed of homogeneous
integrated GPU servers. We improve DNN throughput by over
120⇥ for all but one application (40⇥ for Facial Recogni-
tion) on an NVIDIA K40 GPU. On a GPU server composed
of 8 NVIDIA K40s, we achieve near-linear scaling (around
1000⇥ throughput improvement) for 3 of the 7 applications.
Through our analysis, we also find that GPU-enabled WSCs
improve total cost of ownership over CPU-only designs by
4-20⇥, depending on the composition of the workload.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’15, June 13-17, 2015, Portland, OR USA
Copyright 2015 ACM 978-1-4503-3402-0/15/06 $15.00
http://dx.doi.org/10.1145/2749469.2749472

1. Introduction
Apple Siri, Google Now, Microsoft Cortana and Amazon Echo
represent an important class of emerging internet services
known as intelligent personal assistants (IPAs). This class of
workloads allows users to use natural language and images
to interact with digital assistants through a mobile device.
IPAs process this information as input, reason about the user’s
query, and respond in natural language. Such systems are
increasingly prevalent in today’s devices, and this growth
is expected to further increase with the introduction of IPA-
equipped wearable devices. ABI Research predicts there will
be 485 million annual wearable device shipments by 2018 [40],
while the primary human-computer interface for these devices
are speech and vision [4, 40].

In today’s systems, the computation required to process
IPA queries is housed almost entirely in cloud platforms [10].
Upon a voice (or vision) query to an IPA, only the voice
recording (or image) is sent from the device to the cloud. That
input is transcribed to text, analyzed for semantic meaning,
searched against a database, and a response is sent back to the
device. Significant machine learning problems must be solved
across various query types in this application domain, includ-
ing classifying images, recognizing faces, decoding speech,
and analyzing text. These are challenging machine learning
problems that require powerful algorithms to provide a sat-
isfactory experience for users. One such machine learning
algorithm, deep neural networks (DNNs), has recently gained
popularity in solving this wide range of challenges.

Using a DNN model trained on a large corpus of data has
been shown in the last few years to significantly outperform
traditional machine learning techniques in a number of do-
mains [26]. This has made DNNs particularly compelling in
industry due to the large and rapidly increasing quantities of
available data. Numerous internet service companies (Apple,
Google, Microsoft, Facebook) have been reported to use DNN
as their core machine learning algorithm for a wide range
of applications [3, 5, 7]. In addition, the number of products
and services leveraging DNN continues to grow. For example,
Google has reported that it already uses DNN across numerous
product teams [5].

With the industry-wide convergence on DNN algorithms
across many application domains and the observation that a sin-

gle DNN implementation can generalize across applications,
webservice providers can employ an approach of providing
deep learning as a general datacenter service to be used by
disparate products. This approach is appealing to webservice
companies because development overhead is reduced by not
having each team maintain their own DNN implementations,
and having a centralized service provides a single point of
optimization for DNN. An example of this trend is the Google
Brain project [5], a deep-learning service that is used in over
30 different product teams across the company.

Considering the amount of computation dedicated to DNN
inference at the query level and the opportunity to accelerate a
centralized DNN service, there has been significant research
interest in accelerator platforms for DNN in datacenters. Prior
work has focused on custom ASICs for accelerating DNNs [14,
15, 32]. However, a number of open questions remain for the
design of an accelerator server platform based on commodity
GPU hardware. In particular, a number of challenges must be
addressed to understand how future WSCs should be designed
to leverage GPUs to accelerate DNN as a service in WSCs,
including:
1. Quantifying and optimizing the throughput and latency

advantage of the GPU by investigating the bottlenecks that
inhibit full utilization of GPU resources and limit DNN
throughput.

2. Investigating the scalability of GPU resources in a single
server, and how this scalability differs across applications
and neural network architectures.

3. Understanding the performance, energy, and cost trade-
offs between various server designs and WSC organiza-
tions such as an integrated homogeneous WSC design with
GPU(s) in every server, as well as disaggregated systems.

However, the lack of a publicly available DNN webservice
infrastructure and a representative suite of end-to-end appli-
cations that use this service is an obstacle in addressing these
challenges. In this paper, we first present the design of DjiNN,
an open general DNN service that supports a spectrum of
emerging IPA applications, and Tonic Suite, a set of 7 end-
to-end applications built on the DjiNN service that span the
domains of image processing, speech recognition, and natural
language processing. Using DjiNN and Tonic, we investigate
and design GPU servers for an online DNN service in WSCs.
We examine strategies to maximize system throughput for the
DNN service while managing query latency. We also eval-
uate system architecture design questions including: 1) the
performance scalability with an increased number of GPUs;
2) the memory, PCIe and network bandwidth requirements;
and 3) total cost of ownership tradeoffs for integrated homo-
geneous servers versus disaggregated servers. The detailed
contributions of this paper are as follows:
• DjiNN, a DNN service infrastructure – This paper

presents the complete design and implementation of DjiNN,
a general DNN service infrastructure for an open "Brain" [5]
that supports a spectrum of applications and neural network

architectures (Section 3.1).
• Tonic Suite, a set of DNN applications – We introduce 7

end-to-end applications that use the DjiNN service. They
are representative of emerging workloads spanning the ar-
eas of computer vision, speech recognition, and language
processing systems (Section 3.2).

• GPU accelerator platform design – We identify perfor-
mance bottlenecks in the DNN service and evaluate strate-
gies to mitigate them, achieving high throughput and GPU
scalability without diminishing query latency on a GPU
accelerator platform. With our optimizations, we observe
a 120⇥ throughput improvement using a single GPU com-
pared to a CPU for most applications. Scaling to 8 GPUs
provides additional throughput benefit for the majority of
Tonic Suite applications (Sections 4 and 5).

• WSC designs for a DNN service – We evaluate various
configurations including the number of GPUs, PCIe and
network configurations, as well as disaggregated and inte-
grated server design options. We identify the cost-efficient
server design and system architecture that achieves maximal
throughput and maximal throughput per dollar while satisfy-
ing the latency constraints based on the above investigations
(Section 6).

Our optimizations are able to improve the throughput of DNN
inference by over 120⇥ for all but one Tonic Suite application
(40⇥ for facial recognition) on an NVIDIA K40 GPU over an
Intel Xeon core. On a GPU server composed of 8 NVIDIA
K40s, we achieve near-linear scaling (close to 1000⇥ through-
put improvement) for 3 of the 7 applications. We identify
natural language processing workloads as being bandwidth
constrained, leaving the GPUs starved for data and operat-
ing below their full potential. We address this bandwidth
bottleneck by leveraging improved network and interconnect
technologies, showing performance improvements of up to
4.5⇥ over bandwidth-constrained designs. Through our TCO
analysis, we find that GPU-enabled WSCs improve TCO over
CPU-only designs by 4-20⇥, depending on the composition
of the workload.

2. Background
A neural network is a directed graph of neurons, where each
neuron is a processing element that applies a function to its
input(s) to generate an output. The structure of the network
is defined by a set of connections between different groups of
neurons that perform the same function, known as the layers of
the network. As illustrated in Figure 1, a layer can be of type
input, hidden, or output. A neural network can have multiple
hidden layers, where the number of such layers defines the
depth of the network. Common to all neural networks is a
classifier layer that produces the final output(s) of the network.
This layer has as many outputs as there are classes to predict
by the network.
Deep Neural Network (DNN) A DNN is a neural network

…

…

…

Hidden Layers

Neurons

Input Layer Output Layer

w1

w3
w2

Figure 1: Deep neural network (DNN) architecture

Convolutional Layer

Feature Maps

Pooling LayerInput Image

Figure 2: Convolutional neural network (CNN) archi-
tecture

with many hidden layers. Typically, each neuron is exhaus-
tively connected to the neurons of the subsequent layer, in a
configuration also known as a fully connected network. Each
neuron computes a weighted sum of its inputs to form an out-
put that is sent to the next layer. The weights applied to the
inputs are learned during training and stored in a pretrained
model describing the entire network. The structure of a DNN
is depicted in Figure 1, where the weights (w1, w2, w3) are ap-
plied to the neuron’s inputs to produce the output; this process
is analogous for all the network’s neurons.

Convolutional Neural Network (CNN) CNNs, a special
case of DNNs, have a similar structure to DNNs except they
are specialized for image-related tasks. Two important types
of layers in CNNs include convolutional and pooling layers,
used to extract features from input images. In these layers,
each neuron is mapped to a region of the image to which the
neuron applies a convolution or pooling operation. Because
of this segmentation into regions, the network is not fully con-
nected. These are also called sparsely connected networks.
In convolutional layers, the learned weights are kernels that
are convolved with the image to extract features. Figure 2
shows the kernel (red box) applied to the image generating
a feature map. At each layer, there are multiple learned ker-
nels each producing a distinct feature map (shaded feature
maps in the figure). The pooling layers downsample each
feature map to retain only “interesting” features (green boxes).
This convolution-and-downsample process is repeated multi-
ple times in a CNN to produce high quality features describing
the input image. These features are used in the fully connected
classifier layer to predict the content of the image.

3. DjiNN and Tonic
To investigate the design of a server platform specialized for
DNN and how modern warehouse scale computers (WSCs)
should be outfitted to provide DNN as a service, we design
DjiNN and Tonic Suite. DjiNN is a centralized DNN service
infrastructure that supports a diverse set of DNN-based ap-
plications in WSCs. Tonic Suite is a suite of 7 DNN-based
applications from a wide range of domains including image
classification, facial recognition, speech recognition and nat-
ural language processing. We extract the underlying DNN
computation from each individual Tonic application. We cre-
ate the generalized and configurable DjiNN service with a
common interface to process the DNN computation for each
application. In this paper, we focus on using DjiNN to process
inference (forward pass) queries for these applications.

Figure 3 presents an overview of our system. Tonic Suite
applications, representing inputs from mobile devices, makes
requests to the DjiNN Service. DjiNN houses the trained DNN
network architecture and configuration in-memory for each
Tonic Suite application. To process each application’s requests,
DjiNN executes the DNN inference pass, which generates a
prediction using the pre-processed input from the application,
and returns the prediction result to the application. The design
objectives and architecture of DjiNN, and Tonic Suite are
described in Sections 3.1 and Sections 3.2, respectively.

3.1. DjiNN Service

The goal of the DjiNN service is to provide a unified service
that executes the DNN portion of the Tonic Suite applications.
With this goal in sight, we target the following objectives:
• Decoupled Architecture – DjiNN needs to be a standalone

service accepting and processing external requests. We
design the DjiNN service to accept requests using a custom
socket protocol over TCP/IP. For DNN computation, we
use Caffe [27], an open-source actively developed DNN
library widely used in both academia and industry. For each
incoming request, DjiNN spawns a worker thread, executes
the DNN computation, and sends the prediction back to the
application.

• Diverse Applications – A general DNN service must be
capable of processing requests from a wide range of ap-
plications. To accomplish this, we rely on Caffe’s general
framework that supports various types of neural network
layers. This enables flexible neural network configurations
using Caffe. We extend Caffe to support DNN architectures
from various applications representative of emerging WSC
workloads including image processing, speech recognition,
and natural language processing. Figure 3 shows our de-
sign, where DjiNN receives image, speech, and text based
requests. DjiNN currently supports 7 DNN based Tonic
applications. Supporting more applications simply requires
providing DjiNN a pretrained neural network model.

Users

DNN Architecture

IMC DIG FACE ASR

POS CHK NER

Trained M
odels

DjiNN DNN Service

Natural Language
Processing Task

POS “business” (noun)
“Superman” (P. noun)

CHK “It’s” (VP, B-NP)
“business” (NP, I-NP)

NER “Superman” (PERSON)

IMC
Image Task

FACEDIG

Speech Recognition (ASR)
Task

“It’s business,
Superman”

Tonic Suite Applications

Figure 3: DjiNN architecture

• Request Processing – DjiNN must be able to process mul-
tiple incoming requests with limited overhead. At initial-
ization, DjiNN loads the pre-trained model associated with
each application into memory, giving all worker threads
read-only access to this data. Consequently, incoming re-
quests using the same model are accepted without needing
to load their own copy of the model into memory.

The latest implementation of DjiNN is available online [2].

3.2. Tonic Suite

The DNNs used in Tonic Suite are based on recently published
neural networks that achieve state-of-the-art accuracy in their
target domains, which are summarized in Table 1. The suite of
applications bundled with the neural network configurations,
the trained models, and the server infrastructure to run the
end-to-end applications have been released [2].
3.2.1. Image Task Tonic Suite’s image tasks encompass three
applications: image classification, digit recognition, and facial
recognition. The image tasks do not have pre or postprocess-
ing steps; the service sends the most likely prediction about
the image back to the application. Each of the three image
applications is described below.
Image Classification (IMC) Image classification sends an
image to the DjiNN service and a prediction of what the image
contains is sent to the application. This prediction is made by
a model trained on 1.4M images from ImageNet [20], which
can predict 1000 unique classes. We use AlexNet, a neural net-
work architecture developed by Krizhevsky et al. [28], which
achieves very high accuracy and outperforms other methods
in large scale image classification competitions [41].
Digit Recognition (DIG) Digit recognition sends an image
of a hand-written digit to the service and a prediction of the
most likely digit (between 0-9) is returned to the application.
The network architecture is based on MNIST [31], a widely
used neural network for this task that achieves over 98% accu-

racy. A sample image is included in Figure 3.

Facial Recognition (FACE) The facial recognition applica-
tion predicts the identity of faces using the DjiNN webser-
vice. Facebook recently published DeepFace [43], a facial
recognition network that achieves near human-accuracy in
recognizing faces. We replicate this network into Tonic Suite
and train it on a publicly available dataset of celebrity faces
from PubFig83+LFW [13]. Using this dataset, DjiNN service
classifies the input from 83 candidate celebrity faces.
3.2.2. Automatic Speech Recognition (ASR) Task In Tonic
Suite, we include a DNN based speech-to-text decoder adapted
from Kaldi [37], a state-of-the-art speech recognition tool-
box actively developed by researchers from Microsoft and
academia. Kaldi’s speech processing techniques have been
demonstrated to achieve very low word error rates (WER)
on standard decoding benchmarks. The speech recognition
application requires preprocessing to generate feature vectors
describing the speech input that are sent to the DjiNN webser-
vice. The service returns predictions for each feature vector
that are postprocessed to find the most likely sequence of text
to produce the final result.
3.2.3. Natural Language Processing (NLP) Task Included
in Tonic Suite are NLP tasks designed to glean semantic in-
formation from input text. These tasks include part-of-speech
(POS) tagging, word chunking (CHK), and name entity recog-
nition (NER). For these applications, the text is preprocessed
into word vector representations before being sent to DjiNN.
After receiving the word predictions from the DNN service,
the postprocessing step searches for the most likely sequence
of tagged words. Our networks are based on Senna [19], a
natural language processing toolbox developed by NEC Labs.
The pretrained models are trained on Wikipedia for over 2
months and achieve over 89% accuracy for these applications.

Part-of-Speech Tagging (POS) Part-of-speech tagging as-
signs each word with a part of speech, for example if it is a
noun or a verb.

Table 1: Tonic Suite neural network architectures

Type Application Network Network Type Layers Parameters
Image Classification (IMC) AlexNet [20] CNN 22 60M

Image Service Digit Recognition (DIG) MNIST [31] CNN 7 60K
Facial Recognition (FACE) DeepFace [43] CNN 8 120M

Speech Service Automatic Speech Recognition (ASR) Kaldi [37] DNN 13 30M
Part-of-Speech Tagging (POS) SENNA [19] DNN 3 180K

NLP Service Chunking (CHK) SENNA [19] DNN 3 180K
Name Entity Recognition (NER) SENNA [19] DNN 3 180K

Word Chunking (CHK) Word chunking tags each segment
of a sentence as a noun or verb phrase where each word is
labeled as a begin-chunk (B-NP) or an inside-chunk (I-NP).
First, this application internally makes a POS service request,
updates the tags for its input, and then makes it own DNN
service request.
Name Entity Recognition (NER) Name entity recognition
labels each word in the sentence with a category, for example
whether it is a location or a person.

4. Identifying Bottlenecks for a DNN Service
In this section, we present a real-system analysis of the DNN
service. We evaluate our baseline DNN service performance
on a state-of-the-art GPU. We compare the GPU performance
with the performance achieved on an Intel Xeon processor. We
then conduct a performance analysis to identify bottlenecks
to guide further throughput optimizations in the following
sections. The configuration of the experimental platform is
summarized in Table 2. We use 1 GPU for all the experiments
in this section.

Table 2: Platform Specifications
Hardware Specifications Quantity

System 4U Intel Dual CPU Chassis, 8⇥ PCIe 3.0 ⇥ 16 slots 1
CPU Intel Xeon E5-2620 V2, 6C, 2.10 GHz 2
HDD 1TB 2.5" HDD 1

Memory 16GB DDR3 1866 MHz ECC/Server Memory 16
GPU NVIDIA Tesla K40 M-Class 12 GB PCIe 8

DNN vs. non-DNN Components We first profile each DNN
application on the Intel Xeon to characterize the amount of
computation the back-end DNN service constitutes for each
application. Figure 4 presents the average execution cycle
breakdown for each application between its DNN portion and
the rest of the computation (made up of query pre- and post-
processing). For IMC, DIG, and FACE, the input images are
directly fed into the DNN. Consequently, almost all of the
cycles for the image services are spent on DNN computation.
ASR requires substantial pre- and postprocessing to translate
a voice recording into the final text. Nevertheless, the DNN
service still consumes almost half of the execution cycles for
ASR. For the NLP tasks, which also have pre- and postpro-
cessing, more than two thirds of the total execution time is

Figure 4: Cycle breakdown for each DNN application

DNN computation. This result demonstrates that DNN com-
putation consumes a high percentage of the total execution
time for almost all applications, motivating the need to design
a common efficient DNN service in datacenters.
GPU vs. CPU performance Figure 5 presents the through-
put improvement achieved on the K40 GPU over a Xeon CPU
core. In this experiment, we use the off-the-shelf CPU version
of Caffe linked to ATLAS (Automatically Tuned Linear Alge-
bra Software) [46], a highly optimized linear algebra library
widely used in commercial applications [6], for the matrix
multiplication computation required by the DNN inference.
For the GPU baseline, we use Caffe’s GPU implementations
as well as NVIDIA’s recently released cuDNN library [16],
which optimizes a subset of Caffe’s key layers.

As shown in the figure, networks with more than 30M pa-
rameters achieve above 20⇥ improvement from computing
large matrix multiplications on the GPU. For example, ASR
achieves significant improvement, 120⇥ speedup, over the
CPU baseline. On the other hand, NLP applications, which
achieve only around 7⇥ improvement, have small networks
and thus the size of the matrix multiplications in the neural net-
work forward pass is relatively small. This limits the resulting
improvement achieved by the GPU.
Performance Bottlenecks To guide our throughput opti-
mizations, we profile each DNN service using the NVIDIA

Table 3: DjiNN service applications

Application Input to service Input data size (KB) Output from service Batch size
IMC 1 image 604 1 classification 16
DIG 100 images 307 100 classifications 16

FACE 1 image 271 1 classification 2
ASR 548 speech feature vectors 4594 548 probability vectors 2
POS 28 word sentence 38 28 probability vectors 64
CHK 28 word sentence 75 28 probability vectors 64
NER 28 word sentence 43 28 probability vectors 64

Figure 5: Throughput improvement achieved by a GPU
over a single-thread CPU

Profiler [1] and the NVIDIA Visual Profiler [9] to conduct
performance analysis. Figure 6 presents the profiling infor-
mation of several hardware performance counters for each
application. The metrics are collected at the kernel level for
each application, and are weighted by each kernel’s execu-
tion time to calculate the average performance of the entire
application. As shown in the figure, the ratio of the IPC to the
peak IPC (IPC / Peak IPC) is relatively low for NLP tasks. All
applications exhibit low memory bandwidth utilization (low
L1, shared memory, and L2 bandwidth utilization) relative to
the peak bandwidth utilization, indicating that the low IPC
is not caused by a memory bandwidth limit. On the other
hand, we observe that the IPC is roughly correlated to the
GPU occupancy, the ratio of the number of active warps to the
theoretical peak number of active warps. All three NLP tasks
have under 20% occupancy, while ASR achieves above 90%
occupancy. Low occupancy indicates that the GPU is not fully
utilized for the NLP tasks. The kernels of these applications
do not have enough thread blocks to hide the operation latency.

5. Designing a High Throughput System
As observed in the previous section, the throughput improve-
ment achieved by a GPU is substantially different across the
DNN service component of all applications. This is due to the
different neural network architectures of each application and
the resulting varying degrees of GPU occupancy.

In this section, we investigate and design techniques aiming

Figure 6: Performance bottleneck analysis

to achieve the maximal throughput for the DNN service on
GPUs. We investigate three throughput improving techniques:
1) batching multiple queries into a combined query to increase
occupancy on the GPU; 2) executing concurrent kernels to
achieve better GPU resource efficiency; and 3) scaling the
number of GPUs in a server. In addition to designing and
evaluating techniques for throughput improvement, this in-
vestigation also allows us to gain insights on the throughput
capability of state-of-the-art GPUs for the DNN service.

5.1. Batching DNN Inputs to Improve Throughput

We first investigate techniques to increase GPU occupancy and
DNN service throughput by batching multiple DNN inputs
into a single query. The type and size of the input and output
data for the DNN service for each application are summarized
in the first 4 columns of Table 3. To batch multiple inputs
into a larger query, we increase the query input size by stack-
ing multiple inputs into a larger matrix. Consequently, this
increases the dimensions of the matrix multiplication executed
in the DNN’s forward pass on the GPU. The increased com-
putation achieved by batching increases the occupancy on the
GPU and the system throughput.

For each application, we vary the batch size and study the
impact on the throughput and latency achieved by the GPU.
Figure 7a presents how throughput is affected with varying in-
put batch sizes. As shown in the figure, all applications exhibit
a similar trend: the throughput first increases then plateaus as
the batch size continues to increase. The throughput satura-
tion point for each application is at a different batch size. In

(a) Throughput (b) GPU occupancy (c) Latency

Figure 7: Throughput, GPU occupancy and latency with varying batch sizes

addition, the throughput benefits from batching are different
across applications. Speech recognition (ASR), which already
achieves a considerable (120⇥) throughput improvement over
a Xeon core (Figure 5) and near 100% GPU occupancy with-
out batching (Figure 6), has a small throughput gain with larger
batch sizes. On the other hand, some applications achieve very
high throughput improvement from batching. For example,
NLP tasks achieve over a 15⇥ throughput improvement.

This throughput improvement is from improving the GPU
occupancy by batching queries, as shown in Figure 7b. For
NLP tasks, the baseline (batch size of 1) involves too little
computation to fully occupy the GPU’s resources, achieving
only 20% occupancy. Increasing the batch size increases the
amount of computation required. Consequently, the neural
network computation uses more resources and the GPU occu-
pancy significantly increases, achieving above 80% occupancy
at a batch size of 64. We do not have data for FACE beyond a
batch size of 8 in this figure because of the large size of the
neural network and the high profiling overhead incurred.

Figure 7c presents the query latency for each DNN service.
All inputs in a batched query are combined in an aggregated
large matrix computation and thus share the same query la-
tency across inputs within a batch. As shown in the figure,
the query latency for each DNN service increases slightly at
first. As the throughput plateaus, the latency starts to increase
sharply. At this point, the GPU is saturated and the queuing
delay starts to dominate the latency.

Based on Figures 7a and 7c, we identify the batch size for
each application to achieve the high throughput while limiting
query latency impact. These final values are summarized in
the last column of Table 3. Overall, with the selected batch
size, we achieve 15⇥ throughput improvement for NLP tasks
and 5⇥ for IMC with limited latency increases in both cases.

5.2. Supporting Multiple DNN Services on a GPU

Next, we leverage NVIDIA’s Multi-Process Service (MPS) [8],
which allows kernels from different processes to execute con-
currently on the GPU. Without MPS, each CUDA process
allocates separate scheduling and storage resources on the
GPU. Each time a different process executes, the GPU must

context switch before resuming execution; all processes must
timeshare the GPU. MPS allocates a shared pool of scheduling
and storage resources for independent processes. As a result,
the GPU can schedule multiple kernels concurrently from the
same pool of resources without the need to context switch.

Figure 8 presents the throughput improvement as the num-
ber of concurrent DNN services on the GPU increases from 1
to 16 (the maximum number of simultaneous processes that
MPS supports). Throughput is measured as queries per sec-
ond (QPS). For MPS, DNN service instances can concurrently
execute on the GPU. For comparison, we also present the
non-MPS cases, where queries from multiple DNN service
instances are time sharing the GPU. We use the batch sizes
summarized in the last column of Table 3 for each application.

As shown in the figure, the achieved throughput increases
as the number of DNN services on the GPU increases. With
MPS, increasing concurrent kernels further improves through-
put beyond what batching achieves (shown when the number
of DNN instances is equal to 1). As previously described,
without MPS, CUDA kernels launched by different processes
timeshare the GPU’s resources and have limited concurrency.
With MPS, CUDA kernels launched by different processes
can be executed concurrently. Because of this concurrency,
the server queuing time for the next available time slice on
the GPU is reduced and throughput increases. The through-
put plateaus as we further increase the number of concurrent
DNN services on the GPU. Overall, the DNN service achieves
up to a 6⇥ throughput improvement with concurrent service
execution on the GPU.

Figure 9 presents the query latency as the number of concur-
rent DNN services on the GPU increases. The query latency
is relatively small when the number of concurrent DNN ser-
vices is under 4 but increases sharply as the number of DNN
services grows. MPS successfully limits the latency increase
when compared to experiments without. As discussed earlier,
MPS reduces the queuing and thus, as shown in Figure 9, re-
duces the query latency up to 3⇥, compared to the non-MPS
configuration. Compared to the baseline configuration of exe-
cuting a single service at a time on the GPU, the DNN service
applications benefit from concurrent DNN services, which
improves both throughput and latency.

Combining Figures 8 and 9, four MPS concurrent DNN

(a) Image service (b) ASR service (c) NLP service

Figure 8: Throughput as the number of DNN server instances per GPU increases (higher is better)

(a) Image service (b) ASR service (c) NLP service

Figure 9: Service latency as the number of DNN server instances per GPU increases (lower is better)

Figure 10: Throughput improvement using our optimiza-
tions achieved on a single GPU over single-thread CPU

servers on one GPU achieves high throughput gain with lim-
ited latency impact. For the DNN portion of most applications,
more than 4 concurrent DNN services would have to trade
high latency increase for low throughput improvement. Note
the latency achieved using 4 concurrent DNN services on the
GPU is smaller than the single query service time on the CPU.

Figure 10 summarizes our final throughput improvements
on a K40 GPU after applying input batching (with the best
batch size next to each application in the figure) and MPS.
We achieve significant throughput benefits across the applica-
tions through these two optimizations. For NLP applications,
batching and MPS together improve the GPU throughput gain
from 7⇥ to over 120⇥. The DNN service components achieve
over 100⇥ throughput improvement on the GPU for all but

the FACE application, which achieves a 40⇥ improvement.

5.3. GPU Scalability

To further improve the system throughput, we scale the number
of GPUs in a server and measure the system throughput of our
optimized DNN service. The results are presented in Figure 11,
with each application configured to use the optimal batch size
and 4 MPS processes per GPU. As shown in the figure, both
image services and the speech recognition service achieve
near-linear scaling as the number of GPUs increases. There
is no communication between GPUs and the PCIe bandwidth
between the CPU and each GPU is sufficient for these services.
However, we noticed that for NLP tasks, which have relatively
small neural networks, the throughput plateaus as the number
of GPUs reaches 4. For NLP tasks, each query requires less
computation and the throughput (QPS) is several orders of
magnitude higher than the other two services. As we will
demonstrate in the next section, the throughput plateau is due
to the PCIe bandwidth limitation.

In conclusion, the GPU scalability is dependent on the DNN
characteristics for each application. For 3 out of 7 applications,
by combining our optimizations and scaling the number of
GPUs, we achieve 1000⇥ throughput improvement on our 8
GPU system over a CPU core.

6. Implications for Future WSC Designs
Based on the insights gained from our throughput investiga-
tions in prior sections, we discuss the design of cost-efficient
servers and the WSC systems necessary to provide a central-
ized DNN service for a wide range of applications. Section 6.1
characterizes the bandwidth requirements of the DNN ser-

(a) Image service (b) ASR service (c) NLP service

Figure 11: Throughput as the number of GPUs increases

(a) Image service (b) ASR service (c) NLP service

Figure 12: Throughput as the number of GPUs increases (no PCIe bandwidth limits)

vice, identifying bandwidth to the GPUs as the performance
bottleneck for NLP applications. Section 6.2 then considers
three WSC design strategies for housing the DNN service.
Section 6.3 develops a TCO model to investigate the tradeoffs
between the three designs, identifying the bandwidth con-
straint as a limiting factor for the TCO improvement of certain
classes of DNN-based services. Finally, Section 6.4 describes
and evaluates several network and interconnect architectures
that can address the bandwidth limitation.

6.1. Bandwidth Requirements for Peak Throughput

To design the network configurations for the DNN servers in
datacenters, we examine the bandwidth requirements of the
DNN service. We first measure the peak throughput gain we
can achieve without bandwidth constraints. To do so, we avoid
communication by pinning the input of the DNN service to the
GPU memory, which eliminates any data transfer (including
transferring the final result). We then stress-test our system to
measure the throughput of a system with no PCIe bandwidth
limit. Repeating the experiment of scaling out the number
of GPUs using this PCIe-bypassing setup, we measure the
theoretical throughput improvement, presented in Figure 12.
Without the PCIe bandwidth limit, all applications exhibit near-
linear throughput improvement as we scale out the number
of GPUs. This is expected because we are increasing the
computational capability without any bandwidth contention.

Based on the throughput improvement without the band-
width constraint, we calculate the network bandwidth require-
ment for each application to achieve the maximum throughput.
Figure 13 presents the network bandwidth requirements as
the number of GPUs increases. As a point of reference, the
peak bandwidth of several existing technologies, PCIe v3 and

10Gb ethernet (10GbE), are shown on the graph. For the
computation-heavy tasks (IMC, DIG, FACE, ASR), our sys-
tem is not bound by the PCIe bandwidth and the theoretical
throughput can be achieved by a network with a bandwidth
of at least 4GB/s (Figure 13). On the other hand, the light-
computation tasks (NLP) require far higher bandwidth to sus-
tain the near-linear throughput scaling. Later, we will use
these bandwidth requirements as a guide to designing WSCs
that are provisioned with sufficient bandwidth to overcome
these bottlenecks.

6.2. WSC Architectures for a DNN Service

We next describe three design points for WSCs that can be
used to house the DjiNN service as illustrated in Figure 14.

CPU Only Design As a baseline, we describe a CPU only
datacenter that has no GPU capability. This design, presented
in Figure 14a, includes homogeneous servers and contain
beefy CPU servers that service all of the workloads in the
datacenter, including non-DNN applications, DNN applica-
tions, and the DjiNN service. Each DNN query that hits the
datacenter passes through a front-end (e.g., a load balancer)
to one of the CPU servers. The path taken by each query is
illustrated by a red arrow in Figure 14a. After the query hits
the NIC, it is placed in memory for the CPU to process in full.

Integrated GPU Design Second, in Figure 14b we present
the design of a datacenter with Integrated GPUs, containing
a single server type of beefy CPUs and GPUs. In this design,
the work of processing a query is handled within one server.
However, unlike the CPU Only design, the work of processing
the query is split between the CPU and the GPU. The path of

(a) Image service (b) ASR service (c) NLP service

Figure 13: Bandwidth requirement as the number of GPUs increases

(c) Disaggregated GPU(b) Integrated GPU

Datacenter

CPU +
GPU

Server

CPU +
GPU

Server

CPU +
GPU

Server
…

NIC NIC

CPUs Running Application

…

…
Ethernet

High Performance
Interconnect

Feature Vector

Frontend

GPUs

Memory
NIC

“It’s business, Superman”

(a) CPU only

Datacenter

CPU
Server

CPU
Server

CPU
Server…

NIC NIC …
Ethernet

Memory

Frontend

CPUs Running Application + DNN

NIC

“It’s business, Superman”

Memory

Datacenter

CPU
Server…

Frontend

CPU
Server

CPU
Server

GPU
Server…GPU

Server
GPU

Server

NIC

CPUs Running Application

…
Ethernet

Feature Vector

High Bandwidth Switch Fabric

Small CPUs Moving Data

Memory

NIC
Ethernet

…
High Performance

Interconnect

NIC

NICNIC

“It’s business, Superman”

Feature Vector

Feature Vector

GPUs

Figure 14: Three WSC designs considered in this work. Red arrows show the path of a query through the WSC
before preprocessing, while blue arrows show the path of preprocessed data moving from CPU to GPU

the query to the CPU is shown as a red arrow in Figure 14b
and upon receiving the query, the CPU performs (if necessary)
preprocessing on the query. The result of the preprocessing
is passed to the GPU hosting the DjiNN service via the PCIe
bus (blue arrow in Figure 14b), where the GPU processes
the request. By offloading DNN inference to the GPU, this
model offers substantially higher throughput over the CPU
Only model. However, by joining the GPU and CPU within the
same box, along with the overwhelming preference in WSC de-
sign for homogeneous server configurations [11], GPUs have
to be apportioned to servers to accommodate the homogeneous
case. In this study, we assume 12 GPUs per server based on
the latest available number of PCIe ⇥16 slots available today
on commodity high performance motherboards.

Disaggregated GPU Design To address the lack of flexi-
bility of the integrated design, we consider a design that has
Disaggregated GPUs. In this design, two types of servers co-
exist in the datacenter. Beefy CPU servers, resembling those
described for the CPU Only model, handle all non-DNN work-
loads as well as pre- and postprocessing for DNN queries. In
this design, illustrated in Figure 14c, each DNN-based query
is first preprocessed on the CPU server, then the result is sent
over the network to a GPU server hosting the DjiNN service.

The GPU server is designed as a multicore system with wimpy
CPU cores whose purpose is to pass query data to the GPUs.

The advantage of this approach over the Integrated GPU is
it decouples the GPUs and beefy CPUs. Such a decoupling
can be critical in WSCs where designers are motivated to use a
limited number of server configurations to simplify hardware
and software maintenance and insure against overspecializing
servers in the presence of ever-evolving workloads. By de-
coupling CPUs and GPUs, the amount of GPU compute can
be provisioned to handle the amount of GPU work available
in the datacenter without adding GPUs to each server. How-
ever, a major challenge in this model is to provision sufficient
bandwidth between the CPU and GPU servers. To provide
the necessary bandwidth between the two, we aggregate 16
dedicated 10GbE NICs1 on each device and employ a high
performance network fabric to sustain sufficient bandwidth.

6.3. Total Cost of Ownership

To assess the tradeoffs between these three designs, we com-
pute the Total Cost of Ownership (TCO) for WSCs constructed

1PCIe ⇥16 supports up to 15.875GB/s. 10GbE can theoretically sustain
1.25GB/s, but may have significant protocol overheads. Assuming 80% of
theoretical peak can be obtained, 16⇥ 1.25GB/s connection yields 16GB/s.

TC
O

 (N
or

m
al

iz
ed

to
 C

PU
 O

nl
y)

0% 20% 40% 60% 80% 100%

0.03x
0.1x
0.3x

1x
3x

10x
30x

Disaggregated has
lowest TCO > 2% DNN

(a) MIXED workload

% DNN in Workload

TC
O

 (N
or

m
al

iz
ed

to
 C

PU
 O

nl
y)

TC
O

 (N
or

m
al

iz
ed

to
 C

PU
 O

nl
y)

0% 20% 40% 60% 80% 100%

0.03x
0.1x
0.3x

1x
3x

10x
30x Disaggregated has

lowest TCO 2−72% DNN Integrated has
lowest TCO > 72% DNN

(b) IMAGE workload

% DNN in Workload

CPU Only Integrated GPU Disaggregated GPU

TC
O

 (N
or

m
al

iz
ed

to
 C

PU
 O

nl
y)

0% 20% 40% 60% 80% 100%

0.03x
0.1x
0.3x

1x
3x

10x
30x

Disaggregated has
lowest TCO > 5% DNN

(c) NLP workload

% DNN in Workload

Figure 15: TCO of WSCs designed to house proportions of DNN and non-DNN webservices, normalized to CPU Only
design (lower is better). Workload composition impacts the relative cost effectiveness of each design approach

Table 4: TCO parameters

Component Cost Factor
300W GPU-capable server $6864
High-end 240W GPU $3314
75W wimpy server $1716
Networking equipment $750/10GbE NIC
WSC capital expenditures $10/Watt
Operational expenditures $0.04/Watt/month
Power Usage Efficiency (PUE) 1.1
Electricity $0.067 per kWh
Interest rate on capital expenditures 8%
Server lifetime 3 years
Loan amortization period 3 years
Server maintenance/operations 5%/month

Table 5: DNN service workloads
Type Description
MIXED Mix (IMC, DIG, FACE, ASR, POS, CHK, NER)
IMAGE Image processing (IMC, DIG, FACE)
NLP Natural language processing (POS, CHK, NER)

to house DNN-based webservices using a methodology in-
spired by Barroso et al. [11]. Our methodology for computing
TCO includes upfront hardware capital expenditures (e.g.,
purchasing servers, CPUs, memory, GPUs, networking equip-
ment, facilities, etc.), operating costs (operations, maintenance
and power), as well as financing costs. We do not explicitly
model the GPU and CPU failure rate differences. We use the
assumptions for cost factors as summarized in Table 4. We
measure power on our GPU-enabled system to supply power
draw estimates. In characterizing the price of the servers and
GPUs, we use competitive market prices for the components at
the time of this writing. For the GPU-capable server and GPU
parts, the configurations we price are reflective of the high-end
server used throughout this paper. To characterize the costs of
networks in our approach, we assume 500 server leaf nodes
connected to a hierarchical 10GbE network containing a mix
of core and edge switches. We then average out the cost of
those switches across the 10GbE NICs installed in the servers

to arrive at a cost estimate of $750 per NIC.
To characterize each WSC design, we first assume a work-

load composed in part by one of the DNN service mixes de-
scribed in Table 5 and in part by non-DNN webservices. For
this mix of webservices, we provision enough compute for the
CPU Only design point to characterize its TCO and obtain a
series of performance targets for each service. For example,
given a workload composed of 70% from the MIXED DNN
workload along with 30% non-DNN services, we would pro-
vision 30% of the servers to non-DNN services and 10% to
each of the DNN services (the MIXED workload is composed
of 7 services). We then build out the Integrated GPU and
Disaggregated GPU designs, each matching the throughput
obtained by the CPU Only design, finally applying the model
described above to characterize their TCO.

DNN’s Implications for WSC Design The results of our
TCO analysis are presented in Figure 15 for (a) the MIXED
workload, (b) the IMAGE workload and (c) the NLP workload.
Each plot presents the TCO of the three WSC designs across
a range of assumptions about the mix of DNN and non-DNN
services (x-axis), where the presented TCO is normalized to
the CPU Only case and presented on a log scale (y-axis).

For the MIXED workload presented in Figure 15a, both
GPU-based designs show substantial improvements over the
CPU Only design, except when the workload is composed
almost entirely of non-DNN services. This demonstrates that
there are potentially sizable cost savings available by accel-
erating DNN-based services (up to 20⇥ for Disaggregated
GPU design) as these services consume an increasing volume
of cycles in WSCs. The Disaggregated GPU design also im-
proves upon the Integrated GPU design by between 10% and
2⇥, which we can attribute to the relatively inefficient use of
GPUs by some of the DNN services in the Integrated GPU
design. In particular, each server in the Integrated GPU design
utilizes the same number of GPUs, while the NLP services
can saturate only a subset of those available GPUs because
they are bandwidth-limited by the PCIe interface. This ineffi-
ciency is alleviated by the Disaggregated GPU design, which
decouples CPUs and GPUs and allows for fewer GPUs to be

Table 6: Interconnect and network configurations. We design the networks to use bonded ethernet connections nu-
merous enough to saturate the CPU/GPU interconnect, assuming an additional protocol overhead of 20% on ethernet.
Prices are phrased as the purchase cost over the PCIeV3/10GbE design point

Interconnect Ethernet
Architecture Bandwidth (GB/s) Price ($) Bandwidth (GB/s) Price ($/NIC)

PCIeV3/10GbE 1⇥ PCIe v3 bus shared by GPUs 15.87 +$0 1.25 per NIC, up to 16 NICs +$0
PCIeV4/40GbE 1⇥ PCIe v4 bus shared by GPUs 31.75 +$2000 5 per NIC, up to 9 NICs +$1250
QPI/400GbE 1 QPI link between GPU and CPU socket 307.2 (25.6 per link) +$4000 50 per NIC, up to 8 NICs +$4250

6 links/GPUs per socket

0x

1x

2x

3x

4x

5x

TC
O

 B
re

ak
do

w
n

(N
or

m
al

iz
ed

 to
 P

CI
e

v3
/1

0G
bE

)

CP
U
−O

nl
y

PC
Ie

V
3/

10
G

be

CP
U
−O

nl
y

PC
Ie

V
4/

40
G

be

CP
U
−O

nl
y

Q
PI

/4
00

G
be

D
isa

gg
re

ga
te

d
PC

Ie
V

3/
10

G
be

D
isa

gg
re

ga
te

d
PC

Ie
V

4/
40

G
be

D
isa

gg
re

ga
te

d
Q

PI
/4

00
G

be

In
te

gr
at

ed
PC

Ie
V

3/
10

G
be

In
te

gr
at

ed
PC

Ie
V

4/
40

G
be

In
te

gr
at

ed
Q

PI
/4

00
G

be

CPUs, Memory, etc.
Network Hardware

GPU Hardware
Electricity

Operations
Financing

Facilities
Performance

(a) Mixed−service DNN workload

0x

1x

2x

3x

4x

5x (TCO goes to 8.3x)

CP
U
−O

nl
y

PC
Ie

V
3/

10
G

be

CP
U
−O

nl
y

PC
Ie

V
4/

40
G

be

CP
U
−O

nl
y

Q
PI

/4
00

G
be

D
isa

gg
re

ga
te

d
PC

Ie
V

3/
10

G
be

D
isa

gg
re

ga
te

d
PC

Ie
V

4/
40

G
be

D
isa

gg
re

ga
te

d
Q

PI
/4

00
G

be

In
te

gr
at

ed
PC

Ie
V

3/
10

G
be

In
te

gr
at

ed
PC

Ie
V

4/
40

G
be

In
te

gr
at

ed
Q

PI
/4

00
G

be

(b) Natural language processing DNN workload

Figure 16: TCO breakdown showing the impact of future networking technologies on GPU-enabled WSCs housing
DNN services. Improved bandwidth is key to unleashing the capabilities of GPUs for several DNN applications

employed in the WSC.
The IMAGE workload, presented in Figure 15b, behaves

similar to the MIXED workload, except there is a crossover
point when the number of DNN services exceeds 72% of the
workload. After this point, the Integrated GPU design has
lower TCO than the Disaggregated GPU design. Because
the TCO benefits in the Disaggregated GPU design over the
Integrated GPU design arise from over-provisioning GPUs in
the Integrated GPU design, those benefits slowly disappear
as the workload running in the WSC is comprised of more
DNN-based services that utilize all of the GPUs in the server
(i.e. IMC, FACE and DIG).

The NLP case, presented in Figure 15c has a similar trend to
15a: the Disaggregated GPU model has the lowest TCO over
most of the workload mixes and is a modest improvement over
the Integrated GPU design over that entire range. However,
the TCO for the NLP case is much closer to the TCO of the
CPU Only design, showing a maximum improvement of 4⇥,
as opposed to the 20⇥ for the MIXED case. This difference
occurs because, instead of being partially composed of NLP
services as in the MIXED workload, the NLP workload is
composed entirely of NLP services. Because the performance
of the NLP applications is bound by the bandwidth of the
PCIe, the available GPUs cannot be fully utilized.

6.4. Addressing the Bandwidth Bottleneck

To address this bandwidth limitation, we consider two alterna-
tive designs to the typical configuration comprised of GPUs
supplied by PCIe v3 and a 10GbE network. First, representa-

tive of cutting edge technology available today, we describe
a design that connects the GPUs with PCIe v4, which dou-
bles the bandwidth of PCIe v3 to 31.75GB/s. Accordingly,
we provision the network to also have more bandwidth by
using a 40GbE network with teamed connections at the server
level. Assuming a 20% protocol overhead for ethernet, the
PCIe v4 bus can be saturated by 9 teamed 40GbE connections.
Second, representative of a more aggressively designed sys-
tem that uses near-future technology, we consider a design
that employs Quick Path Interconnect (QPI) [29] to connect
CPUs to GPUs inside the server. Assuming 12 GPUs inside a
2-socket server, 6 point-to-point QPI links would be needed in
each socket. Standard QPI links available at the time of this
writing yield 25.6 GB/s, which is a total of 307.2 GB/s across
all 12 links. To provision enough bandwidth in the network to
feed the GPUs, and again assuming a 20% protocol overhead
for ethernet, 8 teamed 400GbE connections are sufficient to
saturate the QPI links.

We summarize these alternative design points in Table 6.
Included in the table are our assumptions about the cost of
these alternative designs, which are developed using a similar
methodology described for the PCIe v3/10GbE design point,
along with projections of the unit costs for PCIe v4, QPI,
40GbE NICs/switches and 400GbE NICs/switches.

Network Impact on Performance and TCO We character-
ize the impact of these design points with improved bandwidth
by scaling up the networking equipment in the Disaggregated
GPU model. We also make the assumption that bandwidth-
constrained DNN services (NLP) bypass the bandwidth lim-

itations demonstrated in Figure 13 and continue to scale up
in throughput beyond the throughput measured on our GPU-
enabled server. In the Disaggregated GPU design, we model
this performance improvement due to scaling up the network
then introduce designs for the CPU Only and Integrated GPU
cases that match the performance improvement. Note that we
model the CPU Only designs as having PCIe v3 and 10GbE,
as improving the network does little to improve performance
of the CPU Only design.

We present the results of this exercise in Figure 16, apply-
ing it to workloads comprised entirely of either the MIXED
DNN service (a) or of the NLP DNN service (b) in Figures 16
(the IMAGE workload is not bandwidth constrained, so it is
not considered here). The figure shows the performance im-
provement achieved by introducing the improved network into
the Disaggregated GPU design as black lines with “x” marks.
Each group of bars shows the growth in various components
of TCO that are associated with growing the WSC to improve
performance.

We can draw several interesting conclusions from these ex-
periments. First, improving the bandwidth provisioning in the
network is an essential step to unlocking the full potential of
GPUs for bandwidth-heavy NLP services. Large performance
improvements can be realized while minimally impacting TCO
in GPU-enabled WSCs. As the figure shows, the growth in
TCO for the Disaggregated GPU design stems primarily from
increased networking costs because the approach relies heavily
on the network to pass large amounts of data from CPU-based
compute servers to GPU-centric servers. In the Integrated
GPU design the cost increases are slight, showing up primar-
ily in the MIXED workload as increases in the server cost
(PCIe and QPI costs appear as part of the server costs). For
the NLP workload, improving the bandwidth actually reduces
TCO slightly for both improved network designs. This occurs
because the increased utilization of GPUs allows the design
to use fewer GPUs while still improving performance signif-
icantly. Second, scaling up the performance of DNN-based
services is extremely difficult to do without accelerating them.
For both the MIXED and NLP workloads, scaling up through-
put requires scaling up the number of servers in the CPU Only
design roughly in proportion to that increase. Given current
CPU and GPU designs, this identifies GPUs as being the more
promising direction for scaling up DNN-based webservices.

7. Related Work
Deep learning techniques are outperforming state-of-the-art
traditional machine learning methods in speech and image
tasks [22, 28]. There is growing interest both in implement-
ing software for deep learning methods within open source
libraries [12, 21, 27] and in improving hardware designs for
DNNs via CPU optimizations [45] and ASICs [14, 15, 32, 39,
44]. In this work, we focus on leveraging commodity GPU
accelerators to optimize the throughput of DNN and on reliev-
ing bandwidth bottlenecks in the network and interconnect to

sustain high throughput across DNN-based services.
The Catapult project [38] at Microsoft Research ported key

components of Bing’s page ranking to FPGAs, showing the
ongoing need for specialized hardware for datacenter appli-
cations. Researchers also investigated how future datacenters
must evolve by accelerating intelligent personal assistant work-
loads housed in WSCs [24].

In addition to prior work investigating datacenter efficiency
and utilization [23,25,30,34–36,42,47,48], Microsoft studied
reducing the total amount of machines needed in a datacenter
to train an image classification network [17] increasing its effi-
ciency. DistBelief [33] investigated distributing deep learning
tasks across large systems efficiently, and Coates et al. [18]
investigated designing a large network of GPUs connected
with high-speed interconnects specialized for deep learning
and show they are able to effectively distribute computation
in a WSC. These systems investigate training deep learning
networks while this work focuses on the inference task of
DNNs in online applications.

8. Conclusion

This work introduces DjiNN, an open source deep neural
network service and Tonic Suite, a suite consisting of 7 end-
to-end DNN-based applications in the vision, speech, and
natural language processing domains. Using DjiNN, we de-
sign a high-throughput DNN system based on massive GPU
server designs. In most cases, our final server design achieves
over a 100⇥ throughput gain on a single GPU compared to
the CPU baseline, and achieves almost linear scaling with the
number of GPUs. We study the total cost of ownership to pro-
vide insights into designing future warehouse scale computer
architectures for DNN services. In terms of total cost of own-
ership, GPU-enabled datacenters show an improvement over
CPU-only designs by 4-20⇥. In the case of bandwidth-heavy
NLP applications, we show that leveraging improved GPU
interconnect and network components to alleviate bandwidth
constraints is one of the keys to achieving the aforementioned
improvements.

9. Acknowledgment

We thank our anonymous reviewers for their feedback and
suggestions. This work was partially sponsored by Google,
ARM, and by the National Science Foundation (NSF) under
grants CCF-SHF-1302682 and CNS-CSR-1321047.

References
[1] “Cuda toolkit documentation,” http://docs.nvidia.com/cuda/

profiler-users-guide/.
[2] “DjiNN and Tonic: DNN as a Service,” http://djinn.clarity-lab.org.
[3] “Facebook’s quest to build an artificial brain depends on this guy,”

www.wired.com/2014/08/deep-learning-yann-lecun.
[4] “Google Glass,” www.google.com/glass/start.
[5] “Inside the artificial brain that’s remaking the google empire,” www.

wired.com/2014/07/google_brain/.
[6] “Maple 2015. maplesoft, a division of waterloo maple inc., waterloo,

ontario.” http://www.maplesoft.com/.
[7] “Microsoft corp to challenge apple inc with siri alternative:

More intelligent and fast enough!” www.dazeinfo.com/2013/06/
18/microsoft-corp-to-challenge-apple-inc-with-siri-alternative/
-more-intelligent-and-fast-enough.

[8] “Multi-process service,” https://docs.nvidia.com/deploy/pdf/CUDA_
Multi_Process_Service_Overview.pdf.

[9] “Nvidia visual profiler,” https://developer.nvidia.com/
NVIDIA-visual-profiler.

[10] “Apple’s Massive New Data Center Set To Host Nuance Tech,” http:
//techcrunch.com/2011/05/09/apple-nuance-data-center-deal/, 2011.

[11] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a com-
puter: an introduction to the design of warehouse-scale machines,”
Synthesis Lectures on Computer Architecture, 2013.

[12] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Berg-
eron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new
features and speed improvements,” Deep Learning and Unsupervised
Feature Learning NIPS 2012 Workshop, 2012.

[13] B. C. Becker and E. G. Ortiz, “Evaluating open-universe face iden-
tification on the web,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2013.

[14] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” Architectual Support for Programming Languages
and Operating Systems(ASPLOS), 2014.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun et al., “Dadiannao: A machine-learning supercomputer,” in Mi-
croarchitecture (MICRO), 2014 47th Annual IEEE/ACM International
Symposium on. IEEE, 2014, pp. 609–622.

[16] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “cudnn: Efficient primitives for deep learning,”
arXiv preprint arXiv:1410.0759, 2014.

[17] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: building an efficient and scalable deep learning training system,”
in Operating Systems Design and Implementation(OSDI), 2014.

[18] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in International Conference on
Machine Learning(ICML), 2013.

[19] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” The
Journal of Machine Learning Research, 2011.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition (CVPR), 2009.

[21] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza,
R. Pascanu, J. Bergstra, F. Bastien, and Y. Bengio, “Pylearn2: a ma-
chine learning research library,” arXiv preprint arXiv:1308.4214, 2013.

[22] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in International Conference on Acous-
tics, Speech and Signal Processing(ICASSp), 2013.

[23] J. Hauswald, T. Manville, Q. Zheng, R. Dreslinski, C. Chakrabarti, and
T. Mudge, “A hybrid approach to offloading mobile image classifica-
tion,” in International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014.

[24] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khu-
rana, R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars,
“Sirius: An open end-to-end voice and vision personal assistant and its
implications for future warehouse scale computers,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015.

[25] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,
L. Tang, J. Mars, and R. Dreslinski, “Adrenaline: Pinpointing and
reigning in tail queries with quick voltage boosting,” in International
Symposium on High Performance Computer Architecture (HPCA),
2015.

[26] X. Huang, J. Baker, and R. Reddy, “A historical perspective of speech
recognition,” Commun. ACM, 2014.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012.

[29] N. Kurd, J. Douglas, P. Mosalikanti, and R. Kumar, “Next generation
intel R� micro-architecture (nehalem) clocking architecture,” in VLSI
Circuits, 2008 IEEE Symposium on. IEEE, 2008, pp. 62–63.

[30] M. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean code: Achiev-
ing near-free online code transformations for warehouse scale com-
puters,” in International Symposium on Microarchitecture (MICRO),
2014.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
1998.

[32] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “Pudiannao: A polyvalent machine learning accelerator,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems(ASPLOS), 2015.

[33] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learn-
ing and data mining in the cloud,” Proceedings of the VLDB Endow-
ment(PVLDB), 2012.

[34] J. Mars and L. Tang, “Whare-map: Heterogeneity in "homogeneous"
warehouse-scale computers,” in International Symposium on Computer
Architecture (ISCA), 2013.

[35] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sen-
sible co-locations,” in International Symposium on Microarchitecture
(MICRO), 2011.

[36] V. Petrucci, M. A. Laurenzano, Y. Zhang, J. Doherty, D. Mosse, J. Mars,
and L. Tang, “Octopus-man: Qos-driven task management for hetero-
geneous multicore in warehouse scale computers,” in International
Symposium on High Performance Computer Architecture (HPCA),
2015.

[37] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi
speech recognition toolkit,” in Proc. ASRU, 2011.

[38] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A
reconfigurable fabric for accelerating large-scale datacenter services,”
in International Symposium on Computer Architecture (ISCA), 2014.

[39] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: balancing efficiency &
flexibility in specialized computing,” in International Symposium on
Computer Architecture(ISCA), 2013.

[40] A. Research, “Wearable Computing Devices, Like Apple iWatch, Will
Exceed 485 Million Annual Shipments by 2018,” 2013.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition Challenge(ILSVRC),”
2014.

[42] M. Skach, M. Arora, C.-H. Hsu, Q. Li, D. Tullsen, L. Tang, and
J. Mars, “Thermal time shifting: Leveraging phase change materials to
reduce cooling costs in warehouse-scale computers,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture
(ISCA), ser. ISCA ’15, 2015.

[43] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in Computer
Vision and Pattern Recognition (CVPR), 2014.

[44] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in ACM SIGARCH Computer Architecture
News, 2012.

[45] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on cpus,” in Proc. Deep Learning and Unsupervised
Feature Learning NIPS Workshop, 2011.

[46] R. C. Whaley and J. Dongarra, “Automatically tuned linear algebra
software,” in SuperComputing: High Performance Networking and
Computing, 1998.

[47] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse scale
computers,” in International Symposium on Computer Architecture
(ISCA), 2013.

[48] Y. Zhang, M. Laurenzano, J. Mars, and L. Tang, “Smite: Precise qos
prediction on real system smt processors to improve utilization in
warehouse scale computers,” in International Symposium on Microar-
chitecture (MICRO), 2014.

