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§ Deep Learning (DL) models are used in many application domains
§ Benchmarking is a key step to understand their performance
§ The current benchmarking practice has a few limitations that are 

exacerbated by the fast-evolving pace of DL models

Background
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§ Developing, maintaining, and 
running benchmarks takes a 
non-trivial amount of effort
– Benchmark suites select a small 

subset (or one) out of tens or 
even hundreds of candidate 
models

– It is hard for DL benchmark suites 
to be agile and representative of 
real-world model usage

Limitations of Current DL Benchmarking
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§ Benchmarking development and characterization can take a long time
§ Proprietary models are not represented within benchmark suites
– Benchmarking proprietary models on a vendor’s system is cumbersome
– The research community cannot collaborate to optimize these models 

Slow down the adoption of DL innovations

Limitations of Current DL Benchmarking
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§ Reduces the effort to develop, maintain, and run DL benchmarks
§ Is a composable benchmark generation design
– Given a set of DL models, DLBricks parses them into a set of unique layer 

sequences based on the user-specified benchmark granularity (𝐺)
– DLBricks uses two key observations to generate a representative 

benchmark suite, minimize the time to benchmark, and estimate a 
model’s performance from layer sequences

DLBricks
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§ DL layers are the performance building blocks of the model 
performance
– A DL model is graph where each vertex is a layer (or operator) and an

edge represents data transfer
– Data-independent layers can be run in parallel

Key Observation 1
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Model architectures where the critical path are highlighted



§ We use 50 MXNet models that represent 
5 types of DL tasks and run them on 4 
systems

Evaluation Setup
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Evaluations are performed on the 4 Amazon 
EC2 systems listed. The systems are ones 

recommended by Amazon for DL inference. 
Models used for evaluation



§ sequential total layer latency = sum of all layers’ latency
§ parallel total layer latency = sum of layer latencies along the 

critical path 

Key Observation 1
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The sequential and parallel total layer latency normalized to the model’s end-to-end latency 
using batch size 1 on c5.2xlarge 



§ Layers (considering their layer type, shape, and parameters, but 
ignoring the weights) are extensively repeated within and across 
DL models

Key Observation 2
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ResNet50 modules



Key Observation 2
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The type distribution of the repeated layers 

The percentage of unique layers



§ DLBricks explores not only layer level model 
composition but also sequence level 
composition where a layer sequence is a 
chain of layers

§ The benchmark granularity (𝐺) specifies the 
maximum numbers of layers within a layer 
sequence within the generated benchmarks

DLBricks Design
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DLBricks design and workflow 



§ The user inputs a set of models along with a 
target benchmark granularity 

§ The benchmark generator parses the input 
models into a representative (unique) set of 
non-overlapping layer sequences and then 
generates a set of runnable networks

§ The runnable networks are evaluated on a 
system of interest to get their performance

Benchmark Generation Workflow 
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DLBricks design and workflow 



Benchmark Generation Workflow
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§ The performance constructor queries the 
stored benchmark results for the layer 
sequences within the model

§ It then computes the model’s estimated 
performances based on the composition
strategy

Performance Construction Workflow 
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DLBricks design and workflow 



Evaluation
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The end-to-end latency of models in log scale across systems



Evaluation
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The constructed model latency normalized to the model’s end-to-end latency. The benchmark 
granularity varies from 1 to 6. Sequence 1 means each benchmark has one layer (layer granularity).



Benchmarking Speedup
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§ Up to 4.4× benchmarking time 
speedup for 𝐺 = 1 on c5.xlarge

§ For all 50 models, the total number 
of layers is 10,815, but only 1,529
(i.e. 14%) are unique

§ Overall, 𝐺 = 1 is a good choice of 
benchmark granularity configuration 
for DLBricks given the current DL 
software stack on CPUs

The geometric mean of the normalized latency 
(constructed vs end-to-end latency) with varying 

benchmark granularity from 1 to 10. 

The speedup of total benchmarking time across 
systems and benchmark granularities.



§ Generating non-overlapping layer sequences during benchmark 
generation
– Requires a small modification to the algorithms

§ Adapting to Framework Evolution 
– Requires adjusting DLBricks to take user-specified parallel execution rules 

§ Exploring DLBricks on Edge and GPU devices
– The core design holds for GPU and edge devices. Future work would 

explore the design on these devices

Discussion
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§ DLBricks reduces the effort of developing, maintaining, and 
running DL benchmarks, and relieves the pressure of selecting 
representative DL models. 

§ DLBricks allows representing proprietary models without model 
privacy concerns as the input model’s topology does not appear 
in the output benchmark suite, and “fake” or dummy models can 
be inserted into the set of input models

Conclusion
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