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Abstract
Deep Learning (DL) innovations are being introduced at

a rapid pace. However, the current lack of standard specifi-
cation of DL tasks makes sharing, running, reproducing, and
comparing these innovations difficult. To address this prob-
lem, we propose DLSpec, a model-, dataset-, software-, and
hardware-agnostic DL specification that captures the different
aspects of DL tasks. DLSpec has been tested by specifying
and running hundreds of DL tasks.

1 Introduction
The past few years have seen a fast growth in Deep Learning
(DL) innovations such as datasets, models, frameworks, soft-
ware, and hardware. Current practice of publishing these DL
innovations involves developing ad-hoc scripts and writing
textual documentation to describe the execution process of
DL tasks (e.g. model training or inference). This requires a
lot of effort and makes sharing and running DL tasks difficult.
Moreover, it is often hard to reproduce reported accuracy or
performance results and have a consistent comparison across
DL tasks. This is a known [7, 8] “pain point” within the DL
community. Having an exchange specification to describe
DL tasks would be a first step to remedy this and ease the
adoption of DL innovations.

Previous work included curation of DL tasks in framework
model zoos [3, 6, 11–13, 17], developing model catalogs that
can be used through a cloud provider’s API [1, 2, 5], or in-
troducing MLOps specifications [4, 18, 19]. However, these
work either use ad-hoc techniques for different DL tasks or
are tied to a specific hardware or software stack.

We propose DLSpec, a DL artifact exchange specification
with clearly defined model, data, software, and hardware as-
pects. DLSpec’s design is based on a few key principles (Sec-
tion 2). DLSpec is model-, dataset-, software-, and hardware-
agnostic and aims to work with runtimes built using existing
MLOp tools. We further develop a DLSpec runtime to sup-
port DLSpec’s use for DL inference tasks in the context of
benchmarking [9].
∗The two authors contributed equally to this paper.

2 Design Principles
While the bottom line of a specification design is to ensure
the usability and reproducibility of DL tasks, the following
principles are considered to increase DLSpec’s applicability:
Minimal — To increase the transparency and ease the cre-
ation, the specification should contain only the essential in-
formation to use a task and reproduce its reported outcome.
Program-/human-readable — To make it possible to de-
velop a runtime that executes DLSpec, the specification
should be readable by a program. To allow a user to under-
stand what the task does and repurpose it (e.g. use a different
HW/SW stack), the specification should be easy to introspect.
Maximum expressiveness — While DL training and infer-
ence tasks can share many common software and hardware se-
tups, there are differences when specifying their resources, pa-
rameters, inputs/outputs, metrics, etc. The specification must
be general to be used for both training and inference tasks.
Decoupling DL task description — A DL task is described
from the aspects of model, data, software, and hardware
through their respective manifest files. Such a decoupling
increases the reuse of manifests and enables the portability of
DL tasks across datasets, software, and hardware stacks. This
further enables one to easily compare different DL offerings
by varying one of the four aspects.
Splitting the DL task pipeline stages — We demarcate
the stages of a DL task into pre-processing, run, and post-
processing stages. This enables consistent comparison and
simplifies accuracy and performance debugging. For example,
to debug accuracy, one can modify the pre- or post-processing
step and observe the accuracy; and to debug performance, one
can surround the run stage with the measurement code. This
demarcation is consistent with existing best practices [10, 16].
Avoiding serializing intermediate data into files — A naive
way to transfer data between stages of a DL task is to use
files. In this way, each stage reads a file containing input data
and writes to a file with its output data. This approach can be
impractical since it introduces high serializing/deserializing
overhead. Moreover, this technique would not be able to sup-
port DL tasks that use streaming data.
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Hardware
id: uuid
cpu: 
  - arch: x86-64
  - ncpu: 4
  - …
gpu: 
  - arch: nvidia/sm70
  - memory: 16gb
  - driver_version: XXX
  - …
interconnect: nvlink2
memory: 32gb
…
setup: |
   echo 1 > /sys/devices/system/
cpu/intel_pstate/no_turbo

Model
job_type: inference # or training
run: |
  def run(ctx, data):
    … # tf.Session.run(ctx[“model”], data)
    return run_output
model: # model for retraining or inference
   graph_path: https://.../inception_v3.pb
   checksum: XXXX…XXXX
post-process: |
  def post_processing(ctx, data):
    … # e.g. import numpy as np
    return post_processed_data 
outputs: # model outputs
  - type: probability # 1st output modality
    layer_name: prob
    element_type: float32
system_requirements: [gpu]

DLSpec Runtime

Software
id: uuid
name: Tensorflow # framework name
version: 1.0.0 # semantic version
container: dlspec/tf:2-1-0_amd64-gpu
env: 
  - TF_ENABLE_WINOGRAD_NONFUSED: 0
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Datasetid: uuid 
name: ILSVRC 2012
version: 1.0.0 # semantic version
license: … # dataset license
sources: 
   - source: s3://…/test_set.zip
     name: test_set
   - source: … 
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id: uuid # model unique id
name: Inception-v3 # model name
version: 1.0.0 # semantic version
license: MIT # model license
author: Jane Doe # model author
task: image classification
description: …
pre-process: |
  def pre_processing(ctx, data):
    from PIL import Image
    img = Image.open(data[“test_set”][0])
    img = np.asarray(img)
    img = np.transpose(img, (2,0,1))
    …
    return pre_processed_data
inputs: # model inputs
  - type: image # 1st input modality
    layer_name: data
    element_type: float32
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Figure 1: An example DLSpec that consists of a hardware, software, dataset and model manifest.

3 DLSpec Design
A DLSpec consists of four manifest files and a reference log
file. All manifests are versioned [14] and have an ID (i.e. can
be referenced). The four manifests (shown in Figure 1) are:
• Hardware: defines the hardware requirements for a DL
task. The parameters form a series of hardware constraints
that must be satisfied to run and reproduce a task.
• Software: defines the software environment for a DL task.
All executions occur within the specified container.
• Dataset: defines the training, validation, or test dataset.
• Model: defines the logic (or code) to run a DL task and the
required artifact sources.

The reference log is provided by the specification author
for others to refer to. The reference log contains the IDs of the
manifests used to create it, achieved accuracy/performance of
DL task, expected outputs, and author-specified information
(e.g. hyper-parameters used in training).

We highlight key details of DLSpec:
Containers — A software manifest specifies the container
to use for a DL task, as well as any configuration parameters
that must be set (e.g. framework environment variables). The
framework or other libraries information are listed for ease of
inspection and management.
Hardware configuration — While containers provide a stan-
dard way of specifying the software stack, a user cannot spec-
ify some hardware settings within a container. E.g., it is not
possible to turn off Intel’s turbo-boosting (Figure 1 2 ) within
a container. Thus, DLSpec specifies hardware configurations
in the hardware manifest to allow the runtime to set them
outside the container environment.
Pre-processing, run, and post-processing stages — The
pre-/post-processing and run stages are defined via Python
functions embedded within the manifest. We do this because
a DLSpec runtime can use the Python sub-interpreter [15]
to execute the Python code within the process thus avoid-
ing using intermediate files (see Section 2). Using Python
functions also allows for great flexibility; e.g. the Python
function can download and run Bash and R scripts or down-
load, compile, and some C++ code. The signature of the DL-
Spec Python functions is fun(ctx, data) where ctx is a
hash table that includes manifest information (such as the
types of inputs) accepted by the model. The second argument,
data, is the output of the previous step in the dataset→pre-

processing→run→post-processing pipeline. In Figure 1, for
example, the pre-processing stage’s 6 data is the list of file
paths of the input dataset (ImageNet test set in this case).
Artifact resources — DL artifacts used in a DL task are
specified as remote resources within DLSpec. The remote
resource can be hosted on an FTP, HTTP, or file server (e.g.
AWS S3, Zenodo) and have a checksum which is used to
verify the download.

4 DLSpec Runtime
While a DL practitioner can run a DL task by manually fol-
lowing the setup described in the manifests, here we describe
how a runtime (i.e. an MLOps tool) can use the DLSpec
manifests shown in Figure 1.

A DLSpec runtime consumes the four manifests and selects
the 1 hardware to use and runs any 2 setup code specified
(outside the container). A 3 container is launched using the
image specified, and the 4 dataset is downloaded into the
container using the 5 URLs provided. The 6 dataset file
paths are passed to the pre-processing function and its outputs
are then processed to match the 7 model’s input parameters.
The 9 DL task is run. In the case of 8 inference, this causes
the 10 model to be downloaded into the container. The result
from the run are then 11 post-processed using the 12 data
specified by the model outputs.

We tested DLSpect in the context of inference benchmark-
ing and implemented a runtime for it [9]. We collected over
300 popular models and created reusable manifests for each.
We created software manifests for major frameworks (Caffe,
Caffe2, CNTK, MXNet, PyTorch, TensorFlow, TensorFlow
Lite, and TensorRT), dataset manifests (for ImageNet, COCO,
Pascal, CIFAR, etc.), and then wrote hardware specs for X86,
ARM, and PowerPC. We tested our design and showed that it
enables consistent and reproducible evaluation of DL tasks at
scale.

5 Conclusion
An exchange specification, such as DLSpec, enables a stream-
lined way to share, reproduce, and compare DL tasks. DLSpec
takes the first step in defining a DL task for both training and
inference and captures the different aspects of DL model
reproducibility. We are actively working on refining the spec-
ifications as new DL tasks are introduced. We maintain an up-
dated published version of DLSpec at dlspec.netlify.com.
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