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Abstract
Post-training quantization (PTQ) had been recently shown as a compromising method to reduce

memory consumption and/or compute cost for large language models. However, a comprehensive study
about the effect of different quantization schemes, different model families, different PTQ methods,
different quantization bit precision, etc, is still missing. In this work, we provide an extensive study of
those components over tens of thousands of zero-shot experiments. Our results show that (1) Fine-grained
quantization and PTQ methods (instead of naive round-to-nearest quantization) are necessary to achieve
good accuracy and (2) Higher bits (e.g., 5 bits) with coarse-grained quantization is more powerful than
lower bits (e.g., 4 bits) with very fine-grained quantization (whose effective bit precision is similar to 5
bits). We also present recommendations about how to utilize quantization for LLMs with different sizes,
and leave suggestions of future opportunities and system work that are not resolved in this work.

1 Introduction
Large language models (LLMs) have been shown breakthrough performance on various benchmarks, e.g.,
natural language understanding and generation, and have been adopted for daily usage, e.g., Codex [15] and
ChatGPT [21]. However, how to efficiently serve those LLMs becomes urgent due to their large memory
consumption and heavy computation requirement.

Different than classification models or diffusion models, LLMs have their own serving challenge. Generally,
classification models run inference once per query and diffusion models have the same inference behavior for
every time step. However, LLMs have two phases, i.e., prompt and generation: the prompt stage takes the
query/question (a sequence of tokens) from the user and runs one forward pass, then the generation stage
auto-regressively (token-by-token) generates the corresponding answer by running the model for multiple
steps. The fundamental bottlenecks for prompt and generation phases are different. Particularly, for a normal
prompt stage (e.g., sequence length ≥ 256), the forward pass is primarily compute bounded, i.e., higher
compute brings better latency; for the normal generation phase (low batch size) with KV (key and value for
attention) cache, the forward pass is mainly memory bounded, i.e., higher memory bandwidth brings better
performance. See [22] for a more detailed analysis.

Meanwhile, as mentioned in [14, Figure 3], the bandwidth of hardware increases about 1.4x every two
years while the compute increases about 3.1x every two years. Additionally, multiple nodes are now required
to serve extra large models, e.g., 2 A100-80G nodes for MT-NLG-530B [26] and 2 A100-40G nodes for
GPT-3-175B [4], which introduces the extra bandwidth challenge between cross-node communication. As
such, reducing the model size for LLMs is an urgent request. Meanwhile, if we can also reduce the compute
cost, it will cover both prompt and generation phases to further alleviate the serving challenge for LLMs.

Considering the forbidden training/finetuning cost for those LLMs, one of the most effective ways to
alleviate those memory/compute challenges is post-training quantization (PTQ), where no/minimal training
is required to reduce the bit precision for weights and/or activations to INT4 or INT8. Several works,
e.g., [30, 12, 29, 7] have shown the effectiveness of PTQ, but none of them gives a systematic study, e.g., the
functional coverage for different PTQ methods, the sensitivity of different models, etc.
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Figure 1: The model size and quality trade-off of different quantization methods on models from OPT and
BLOOM families. Here PTQ (with fine-grained quantization) represents the method from [30, 12], RTN
means the naive round-to-nearest baseline (with fine-grained quantization as well), and FP16/INT8 is used as
the no-accuracy-loss baseline. Note that we drop all diverged points for better visualization. For all detailed
numbers, please see Appendix D.

In this work, we provide a comprehensive study on the quantization effect for both weigh-only quantization
and weight-and-activation quantization using different quantization schemes, e.g., symmetric and asymmetric
quantization, with various PTQ methods, including round-to-nearest (RTN), GPTQ [12], ZeroQuant [30] and
its variants, on two different model families OPT [34] and BLOOM [24] across model sizes from 125M to
176B. In summary, our observations are as follows.

Sensitivity Analysis(Table 2 and 3)

– We demonstrate that INT8 weight-only quantization does not have any model quality effect. For
INT4 weight-only quantization, larger models usually exhibit better quantization tolerance as
compared to relative smaller models.

– Activation quantization is generally more sensitive to quantization as compared to weight quanti-
zation. Smaller models usually have better activation quantization performance than the relative
larger model.

– Different model families show entirely different INT8 activation quantization behaviors. Particularly
for large models, BLOOM-176B still has meaningful accuracy (about 1 perplexity, PPL in short,
point drop) but OPT-30B and -66B have much worse performance.

Existing PTQ Method Analysis(Table 4, 5, 6, and 7)

– Existing methods can significantly reduce the quantization error as compared to the round-to-the-
nearest baseline. Different PTQ methods have their own best working scenarios.

– The current existing method can barely achieve less than 0.1 PPL points degradation for either INT4
weight-only or W4A8 weight-and-activation (i.e., INT4 weight and INT8 activation) quantization.

Fine-grained Quantization Effect(Table 8, 9, 11, 12, 10, and 13)
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– With further help from fine-grained quantization, PTQ is able to achieve <0.1 PPL points
degradation for large models (>13B) with either weight-only quantization or weight-and-activation
quantization.

– Larger models can use relative coarse-grained weight quantization (e.g., block size 128/256 for
BLOOM-176B) to achieve good quantization error as compared to smaller models (e.g., block size
32/64 for OPT-30B).

– For BLOOM-176B, coarse-grained (per-row) weight quantization with higher bits (e.g., 5 bits)
always leads to better accuracy as compared to fine-grained quantization with lower bits (e.g., 4
bits with 32 elements as the quantization block size), even if the real bit precision is similar.

We provide model size and model quality trade-offs of models from OPT and BLOOM families in Figure 1.
As can be seen, using PTQ optimization methods from [30, 12] and fine-grained quantization, we set up a
new quantization Pareto frontier for LLMs. Meanwhile, we recommend the following setting for quantizing
LLMs (note that activation quantization should be only applied if necessary): (1) For larger models (>10B),
fine-grained (block size 64–256) 4-bit weight quantization plus 8-bit activation quantization (block size 64–256)
with PTQ methods can be used for real deployment; (2) For middle-size models (<10B and >1B), per-row
INT8 quantization plus fine-grained (block size 64–256) INT8 activation quantization can be used with PTQ
methods from [12, 30]; (3) For smaller models (<1B), directly apply per-row W8A8 (INT8 weight and INT8
activation) RTN is enough based on [30].

2 Related Work
Different quantization methods [25, 32, 9, 35, 1, 8, 27, 17] for transformer-based models [28] have been
explored for a while. However, most of those works need quantization-aware finetuning or even expensive
quantization-aware knowledge distillation [16]. Due to the cost of training/finetuning LLMs, it is a challenge
for practitioners/researchers to do finetuning/distillation on those LLMs, particularly for models with hundreds
of billions of parameters, like GPT-3-175B [4] and BLOOM-176B [24].

Post-training quantization (PTQ) [31, 3] is an alternative way to quantize the model with no/minimal
finetuning requirement. Along this line, several recent works focus on LLMs (beyond the million-parameter
scale). [30] proposes vector-based INT8 quantization with layer-by-layer knowledge distillation to overcome
the training cost and quantization error introduced by LLMs. [6] uses similar vector-based INT8 quantization
weight plus mixed-precision (INT8/FP16) quantization for activation to overcome the sensitivity of activation
quantization. However, the inference speed of [6] is generally even slower than FP16 baseline [2] due to the
difficulty of implementing mixed-precision calculation within a single tensor. More recently, [12] extends
OBQ [10] on LLMs for INT4 weight-only quantization and shows great efficiency on quantization and latency,
and [29] shows the outliers from activations can be smoothed out by migrating the quantization difficulty
from activations to its associated weights. However, [29] can only work for W8A8 quantization as lower weight
precision (INT4) itself already leads to significant accuracy degradation, and the accuracy drop is larger than
0.1 PPL points, which as discussed in the later section is sub-optimal. [7] shows the scaling law of weight-only
quantization with the simplest round-to-nearest baseline, but it does not consider the weight-and-activation
quantization and/or the above PTQ optimization methods. As can be seen from Figure 1, by using PTQ
optimization methods, the model quality can be significantly improved. Please also see Appendix D for more
detailed numbers.

Different than existing works, our paper extensively tests the effect of (1) different quantization schemes,
e.g., symmetric and asymmetric quantization, (2) different PTQ methods, e.g., [30, 12], (3) different model
families, e.g., [24, 34], (4) different quantization coverage, e.g., weight-only and weight-and-activation
quantization, and (5) other discussions, e.g., the effect of quantization granularity. As such, we provide a
much more comprehensive understanding of post-training quantization for large language models compared
to the previous works.
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Table 1: Quantization sensitivity (or quantization accuracy loss) categorization. From Class-1 to Class-3,
the sensitivity (or loss) becomes larger.

Class Class-1 Class-2 Class-3

PPL Degradation ≤0.1 >0.1 & ≤0.5 >0.5

3 Background and Challenges

3.1 Background of Quantization
Quantization maps floating point (e.g., FP16/FP32) numbers to integer numbers (e.g., INT4/INT8) so that
lower memory usage (weight quantization) and faster integer arithmetic (weight-and-activation quantization)
can be achieved compared to the floating point format. In this work, we are focusing on uniform quantization,
i.e.,

Q(x) = INT
(
(x− Z)/S

)
− Z, (1)

where Q is the quantization function, x is a floating point input vector/tensor, S is a real valued scaling
factor, and Z is an integer zero point. Based on different settings, the quantization method can be viewed as
(1) symmetric vs. asymmetric quantization (Z = 0 or not), (2) fine-grained vs. coarse-grained quantization
(how to partition the input x and get its associated scaling factor, e.g., matrix wise or row wise). See [13] for
more details.

Throughout this work, we focus on post-training quantization (PTQ), i.e., no or minimal training
effort is applied after quantization, for which large accuracy degradation usually exhibits for coarse-grained
quantization (per matrix/tensor) due to their large quantization error. As such, we focus on fine-grained
quantization. Particularly, we use the per-row quantization (one row of the weight matrix or one token for the
activation) from [30] as our coarsest-grained quantization method, and we use block-k quantization (for every
k elements, they have their own scaling factor and/or zero point) as our finer-grained quantization scheme.

3.2 Post Training Quantization for Large Language Models
There are mainly two categories of PTQ for LLMs, i.e., weight-only quantization [12] and weight-and-activation
quantization [6, 30, 29]. For the latter case, all works found that activation quantization is more sensitive than
weight quantization. However, none of them gives a systematic view, e.g., the sensitivity of weight/activation
quantization for different model sizes and different model families. Therefore, we here perform a study on
both the OPT [34] and BLOOM [24] families to illustrate the quantization sensitivity of weight and activation.

3.2.1 Settings

Quantization setting. We use both symmetric and asymmetric quantization to measure the quantization
sensitivity and show the benefit of asymmetric quantization. Particularly, we use per-row quantization [12]
for weight quantization and use per-token quantization for activation [30].

Sensitivity setting. We use the zero-shot validation perplexity (PPL) difference on three datasets, i.e.,
Wikitext-2 [20], PTB [19], and C4 [23] , before and after quantization of those LLMs to demonstrate their
sensitivity as the PPL is highly related to zero-shot/few-shot accuracy measurement [7]. Particularly, a larger
PPL drop means higher quantization sensitivity. For simplicity, we also categorize quantization sensitivity (or
quantization accuracy loss) into 3 different classes as shown in Table 1.1 The sensitivity (or loss) gradually
increases as the class number becomes larger. From a practical perspective, we prefer lower quantization
sensitivity (accuracy loss) and Class-1 can be (almost) viewed as the optimal-loss post-training quantization.

1The threshold is selected since when the model size is about doubled (e.g., 13B vs. 30B, and 30B vs. 66B), the PPL
improvement is about 0.5 (see Table 2).
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Table 2: Average PPL of OPT. See Table D.1 for all results.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W16-A16 28.27 22.93 15.44 13.58 11.90 11.22 10.70 10.33

W8sym-A16 28.27 22.96 15.44 13.59 11.90 11.22 10.70 10.33
W8asym-A16 28.31 22.96 15.46 13.60 11.90 11.22 10.70 10.33
W4sym-A16 45.42 27.00 20.79 25.06 14.36 12.73 11.77 97.05
W4asym-A16 37.46 26.76 19.75 19.58 13.44 12.09 11.52 31.52

W16-A8sym 28.40 23.14 16.40 14.29 26.04 3171.49 2048.21 2638.09
W16-A8asym 28.37 23.02 16.06 13.76 12.62 15.36 23.57 561.35

Table 3: Average PPL of BLOOM. See Table D.2 for all results.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

W16-A16 29.35 28.32 20.43 17.58 14.96 10.90

W8sym-A16 29.37 28.33 20.43 17.59 14.97 10.90
W8asym-A16 29.36 28.33 20.45 17.59 14.97 10.90
W4sym-A16 34.73 33.24 23.18 19.36 16.27 11.28
W4asym-A16 33.06 39.40 22.47 19.01 15.90 11.20

W16-A8sym 29.52 28.48 20.68 17.73 15.28 12.10
W16-A8asym 29.41 28.36 20.52 17.65 15.14 11.62

3.2.2 Robustness of Weight-only Quantization for Large Models

The results of weight-only quantization of OPT and BLOOM are shown in Table 2 and 3. INT8 (either
symmetric or asymmetric) weight-only quantization leads to almost no accuracy loss (smaller than 0.05, i.e.,
Class-1). As such, for generation-oriented tasks, we can simply replace FP16 weight with INT8 weight to
save memory consumption. For INT4 quantization, the asymmetric method has better accuracy than the
symmetric method since asymmetric quantization has better utilization of the quantization range. Also,
larger models have better tolerance to low-precision quantization (i.e. INT4) than smaller models, except for
several models, e.g., OPT-66B.2 Particularly, for BLOOM-176B, the PPL degradation (about 0.3 points) is in
Class-2, and this may explain why the large GLM-130B [33] can work with INT4 weight-only quantization
out of the box with acceptable accuracy impact.

3.2.3 Challenge of Activation Quantization for Large Models

Activation quantization has generally been shown to be more challenging than weight quantization [30, 6].
As such, throughout the paper, we only focus on INT8 activation quantization.

2[12] found that OPT-66B has a high ratio of dead neurons in the early layers, which may affect the compression ability. We
also find another possible reason that the Layer Norm of OPT-family is not well trained (except OPT-350M): the weight and the
bias are all 1’s and 0’s, respectively.
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Similar to weight-only quantization, asymmetric quantization here has better performance than symmetric
quantization, e.g., OPT-6.7B has a totally different behavior with asymmetric and symmetric quantization.
Different than weight-only quantization, smaller models usually have better activation quantization tolerance
as their hidden dimension is smaller and the activation dynamic range is also narrower than larger models [30].
Note that for models with model size larger than 10B, all of them belong to Class-3, which has more than
0.5 PPL points degradation.

Also, note that different model families have significantly different behaviors. BLOOM does not have
divergence issues up to 176B model size but OPT has very poor performance from 6.7B model size (the larger
models with INT8 activation have even worse PPL). This may be caused again by the layer norm issue of
OPT-family2.

3.2.4 Summary

In a short summary,

• INT8 weight-only quantization can be used as a standard (almost) no-accuracy-degradation way to
help reduce memory cost for LLMs.

• INT4 weight-only quantization for small models leads to significant accuracy degradation (Class-3)
and this effect diminishes as the model size becomes larger (Class-2). However, even for the larger
models, the accuracy degradation might be higher than the gain from using the larger model, e.g., 4-bit
asymmetric quantized OPT-30B has worse performance than 8-bit quantized OPT-13B in Table 2.

• INT8 activation leads to minimal accuracy degradation for small models (Class-1) and the trend
becomes larger for larger models (Class-3). Another interesting thing is that the activation quantization
sensitivity is highly related to the model family, e.g., the result of BLOOM in Table 3 is much better
than that of OPT in Table 2.

4 Evaluation of Existing Methods for PTQ
Several lightweight optimization-based (weight of the model will be updated during quantization) methods
have been proposed. Different than quantization-aware training, those methods [30, 12, 29] only require a
small portion of the training data and a short range of training time. Among them, two types of methods
are demonstrated to be both effective and efficient (based on GPU resource, time cost, and data) for INT4
weight quantization, GPTQ [12] and ZeroQuant [30]. For this work, we focus on the variants of GPTQ and
ZeroQuant as well as the most straightforward baseline, round-to-nearest neighborhood (RTN).

RTN directly applies PTQ on the trained data and follows Section 3.1 to do the quantization. Particularly,
for symmetric quantization, we set S = max(abs(x)) and Z = 0; for asymmetric quantization, we set
S = max(x)−min(x) and set Z = min(x).

GPTQ extends the OBQ [10] by column-/row-wisely quantizing weight matrix instead of element-by-element.
In short, it directly optimizes the following non-linear least square problem,

min
Ŵ
‖Wx− Ŵx‖22, (2)

where W is the weight, x is the activation, and Ŵ is a quantized weight. There are multiple ways to solve
this problem, e.g., using second-order methods to get a closed-form solution as GPTQ does or using ZQ-Local
which is discussed below. See [12] for more details.
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Table 4: The evaluation results of different PTQ methods on OPT with W4asym-A16. See Table D.3 for the
full table.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W16-A16 28.27 22.93 15.44 13.58 11.90 11.22 10.70 10.33

RTN 37.46 26.76 19.75 19.58 13.44 12.09 11.52 31.52
GPTQ 33.52 25.02 16.42 14.19 12.28 11.42 10.78 10.52
ZQ-Local∗ 33.50 25.48 16.74 14.45 12.46 11.64 11.05 10.79
ZQ-Global∗ 31.77 24.45 16.48 14.30 12.38 11.62 11.04 10.68

ZQ-Global is the original method proposed in [30], where authors treat each transformer layer as a small
neural network (a.k.a., subnetwork) and use the unquantized FP16 subnetwork as the teacher model to distill
the quantized one with a few hundred iterations, i.e.,

min
θ̂
‖fθ(x)− fθ(x)‖22, (3)

where θ is a set of weight, θ̂ is the quantized version of it, fθ is the subnetwork with parameters θ, and x
is the input. As such, it can significantly reduce the GPU resource requirement and time cost. See [30] for
more details.

ZQ-Local is an extension mode of ZQ-Global for further GPU requirement reduction and training cost
reduction. Particularly, instead of using each transformer layer as the subnetwork, we treat each linear layer
as the subnetwork. This method can be viewed as an iterative first-order optimization method (e.g., SGD) to
solve Eq. 2.

4.1 Settings
We compare four different methods on weight-only and weight-and-activation quantization. As weight
quantization is always static (i.e., it does not change during inference), there is almost no system performance
difference between symmetric and asymmetric quantization,3 we directly use asymmetric quantization for
weight for better accuracy. For activation quantization, since we use dynamic quantization as [30] (i.e. the
bias term dynamically changes and cannot be simply fused into other operators), symmetric quantization
would potentially provide better system performance but worse accuracy than asymmetric quantization.
As such, in this section, we provide both results to demonstrate the trade-off. We use the quantization
error/sensitivity as Section 3 to demonstrate the effectiveness of these methods.

For parameter used for GPTQ, ZQ-Local, and ZQ-Global, please see Appendix A. One interesting thing we
find for ZeroQuant is that the hyperparameters (e.g., learning rate and learning-rate scheduler) provided in the
original work [30] are sub-optimal. In this work, for ZQ-Local and ZQ-Global, we use the best configuration
we find to report the result. For simplicity, we mark ZQ-Local and ZQ-Global as ZQ-Local∗ and ZQ-Global∗,
respectively, with tuned results.

4.2 Evaluation of Weight-only Quantization
The weight-only quantization results of OPT and BLOOM are shown in Table 4 and 5, respectively.

Similar to RTN (which has been shown in Section 3), GPTQ, ZQ-Local∗, and ZQ-Global∗ have the same
observation, i.e., larger models are less sensitive to INT4 weight-only quantization except for OPT-66B,

3The bias term (a.k.a., the zero point) can be simply fused into the previous activation quantization kernel [30].
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Table 5: The evaluation results of different PTQ methods on BLOOM with W4asym-A16. See Table D.6 for
the full table.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

W16-A16 29.35 28.32 20.43 17.58 14.96 10.90

RTN 33.06 39.40 22.47 19.01 15.90 11.20
GPTQ 31.08 39.67 21.58 18.33 15.50 11.02
ZQ-Local∗ 31.74 31.06 21.70 18.50 15.55 11.11
ZQ-Global∗ 31.21 30.85 21.38 18.33 15.52 11.05

which has larger degradation than OPT-30B. Overall, optimization-based methods have significantly better
accuracy performance than the baseline method, RTN. For instance, optimization-based methods significantly
reduce PPL point degradation of OPT-30B/66B compared to RTN. Meanwhile, most quantized large models
(>6.7B) belong to Class-2, which has the potential to be deployed for real application (e.g., INT4 OPT-30B
(66B) has better quality than INT8 OPT-13B (30B)).

Among the three optimization-based methods, ZQ-Global∗ usually shows better performance than the
other two on smaller models (smaller than 1B parameters), and GPTQ demonstrates better performance on
larger models. ZQ-Local∗ does not give better results than GPTQ and ZQ-Global∗, which is understandable
since GPTQ utilizes a “closed” form to solve the non-linear quadratic problem and ZQ-Global∗ optimizes a
larger subnetwork.

However, the worse performance of ZQ-Global∗ than GPTQ for larger models is not initially expected
as ZQ-Global∗ optimizes an entire transformer layer while GPTQ only optimizes a single linear layer. One
possible reason is that large models are more sensitive to the weight update and a more advanced finetuning
method is needed.4

4.3 Evaluation of weight and activation quantization
The evaluation results of existing methods with W4A8 quantization are presented in Table 6 and 7.
Optimization-based methods achieve significantly better accuracy than RTN for both asymmetric and
symmetric activation quantization schemes, demonstrating their effectiveness. However, all of the results
are in Class-2 or Class-3, i.e., it might be better to use smaller models with fewer parameters than larger
models with quantization.

Among quantization-based methods, ZQ-Global∗ and ZQ-Local∗ work generally better than GPTQ, which
is expected since GPTQ was originally proposed for weight-only quantization. Compared to ZQ-Local∗,
ZQ-Global∗ has better performance for most cases except for the two largest models, i.e., OPT-66B and
BLOOM-176B, even though ZQ-Global∗ has larger trainable parameters in one step, which again reflects
that for LLMs, a more suitable and advanced optimization method is needed.

4.4 Summary of Existing Methods
In a short summary,

• GPTQ generally works better for weight-only quantization, and ZeroQuant (including both ZQ-Global
and ZQ-Local) has better performance for weight & activation quantization. We also summarize the

4We also tried to freeze different components of the subnetwork, e.g., layer norm and/or bias, to see if we could get better
results. However, they all exhibited similar performances.
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Table 6: OPT ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym. Please see Table D.9 for the full table.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W16-A16 28.27 22.93 15.44 13.58 11.90 11.22 10.70 10.33
W8asym-A16 28.31 22.96 15.46 13.60 11.90 11.22 10.70 10.33

W4asym-A8sym Block
RTN 37.21 27.84 24.73 31.86 146.10 3953.99 3238.68 2990.32
GPTQ 32.72 25.80 17.55 15.46 51.78 3409.66 1889.45 4822.68
ZQ-Local∗ 33.10 26.29 18.04 16.40 18.67 2536.44 1612.07 504.19
ZQ-Global∗ 32.25 25.13 17.17 15.52 43.43 118.76 430.42 1687.28

W4asym-A8asym Block
RTN 37.24 27.07 21.32 25.39 14.80 26.36 86.26 815.00
GPTQ 32.82 25.28 16.81 14.52 13.88 17.28 20.71 648.69
ZQ-Local∗ 33.40 25.61 17.11 14.84 13.24 14.23 18.53 16.32
ZQ-Global∗ 31.90 24.81 16.74 14.55 13.17 13.07 14.65 37.82

best optimization-based method for different models and different settings in Table B.1 and B.2.

• The tested optimization-based methods cannot achieve Class-1 quantization error for either INT4
weight-only or W4A8 weight-and-activation quantization except for GPTQ on OPT-30B with weight-only
quantization.

5 Fine-grained Quantization and Its Evaluation with PTQ
With PTQ and row-wise quantization, we can hardly achieve Class-1 quantization error for either weight-only
or weight-and-activation quantization. As such, it is generally better to use a smaller model with INT8 weight
quantization than a 2x larger model with INT4 weight quantization.

One way to solve this problem is to use finer-grained quantization schemes [5], i.e., every k elements
have their own scaling factor and/or zero point. This can significantly reduce the quantization error. For
the extreme case, i.e., every 1 element has its own scaling factor, we can exactly recover the original FP16
number. More importantly, such block-k quantization can be implemented on modern GPU (one of the most
popular deep learning architectures) since the compute unit (streaming multiprocessor) of GPU process tiles
of data (e.g., 128 by 128 tiling size) for matrix computation.

5.1 Settings
Although fine-grained quantization can greatly close the gap between the quantized tensor and its floating
point counterpart, later we show that it still leaves a non-trivial accuracy gap if RTN is applied. Therefore,
built upon fine-grained quantization, we also apply the existing optimization-based methods to further boost
the accuracy. Particularly, we use GPTQ and ZQ-Global for all models and settings, and use ZQ-Local
for OPT-66B and BLOOM-176B. For hyper-parameters used for ZQ-Global and ZQ-Local, we choose the
top three found in Section 4 for all models except for BLOOM-176B, for which we only use the top-one
hyperparameter, to reduce the training cost.

5.2 Evaluation of Weight-only Quantization
4-bit Quantization. We report the W4A16 results of OPT and BLOOM in Table 8 and 9 with various
quantization block sizes, respectively. Smaller block sizes improve the performance by a non-trivial margin as
compared to per-row quantization.
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Table 7: BLOOM ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym. Please see Table D.12 for the full
table.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

W16-A16 29.35 28.32 20.43 17.58 14.96 10.90
W8asym-A16 29.36 28.33 20.45 17.59 14.97 10.90

W4asym-A8sym Block
RTN 33.47 40.83 23.07 19.31 16.36 12.91
GPTQ 31.59 40.47 22.10 18.48 15.95 12.54
ZQ-Local∗ 32.13 31.30 22.01 18.69 15.86 11.41
ZQ-Global∗ 31.31 31.18 21.51 18.41 15.67 11.60

W4asym-A8asym Block
RTN 33.18 39.73 22.75 19.17 16.19 12.22
GPTQ 31.35 39.50 21.71 18.44 15.75 11.86
ZQ-Local∗ 31.86 31.22 21.86 18.66 15.75 11.19
ZQ-Global∗ 31.21 31.02 21.43 18.39 15.58 11.49

For different model sizes, the diminishing return points are different. For instance, small models (e.g.,
OPT-125m and BLOOM-560m) can achieve great gain until the block size becomes 32. However, for large
models (>10B, except OPT-66B), the gain from smaller block sizes quickly vanishes around block-256/512.
More importantly, for those ≥13B models, small quantization block size makes the quantization error belong
to Class-1, which means the accuracy degradation is almost negligible.

We also report full 3-bit quantization results in Appendix C.

Fine-grained VS. Higher Bits Would higher (more) bits with coarse-grained quantization be better
than lower bits with finer-grained quantization? To answer this, we select the most robust model in our
study, i.e., BLOOM-176B, to perform 3 to 8 bits asymmetric weight-only quantization. We use 32 as the
smallest block size, since with such a small block size, the real effective bit precision is N+1 bits (for every 32
numbers, we need 2 FP16 numbers, scaling and bias values).

The results are presented in Table 10. As can be seen, finer-grained quantization cannot have better
performance than higher bits quantization with relatively coarser granularity for all cases. Another interesting
noticeable point is that 6-bit quantization can achieve no-loss quantization. However, how to achieve good
system performance when using non-standard bit precision (e.g., 6 bits) is a big challenge (we give potential
solutions in Section 6).

5.2.1 Summary

By testing the optimization-based PTQ method with a fine-grained quantization scheme, here is a short
summary:

• Larger models (≥10B) can achieve Class-1 quantization error for 4-bit quantization. They can benefit
from low-precision quantization as the model size with INT4 is similar to an INT8 2x smaller model
and the accuracy is better.

• Smaller models (≤10B) usually can only achieve Class-2 or Class-3 quantization error. As such, the
usage of 4-bit quantization needs to be carefully evaluated for those models.
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Table 8: Results of W4asym-A16 quantization on OPT with various block-size out of the best result from
optimization-based methods. See Table D.15 for full results including RTN. N/A means that the block size is
not divisible by the hidden size.

Block-size 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W16-A16 28.27 22.93 15.44 13.58 11.90 11.22 10.70 10.33

Per-row 31.77 24.45 16.42 14.19 12.28 11.42 10.78 10.52
1024 N/A 24.39 16.17 N/A 12.16 11.36 10.75 10.52
512 N/A 24.34 15.97 13.93 12.08 11.32 10.73 10.52
256 30.68 24.17 15.84 13.89 12.05 11.28 10.74 10.50
128 30.04 23.99 15.85 13.83 12.10 11.28 10.74 10.44
64 29.88 23.99 15.76 13.84 12.02 11.27 10.72 10.40
32 29.62 23.86 15.71 13.82 12.03 11.28 10.72 10.41

• Fine-grained quantization cannot match the accuracy of more-bit quantization even if the real model
size is similar. However, how to utilize non-standard bit-precision is still challenging.

5.3 Evaluation of Weight and Activation Quantization
W4A8 Quantization We show four different settings of W4A8 quantization of OPT and BLOOM
in Table 11 and 12, respectively. We restrict the activation quantization block size to 128.

Thanks to the small activation quantization block size, there is no accuracy difference between symmetric
and asymmetric quantization schemes. For large enough models (e.g., ≥10B), using such fine-grained
activation quantization does not introduce much quantization error as compared to weight-only (either per
row or per 128 elements) quantization, except for full-row weight quantization on OPT-66B3. For smaller
models, fine-grained activation quantization plus per-row weight quantization usually has a larger accuracy
drop (around 0.1 PPL drop) than per-row weight-only quantization.

Different Quantization Block Sizes We report the effects of different activation quantization block sizes
in Table 13 on BLOOM-176B.

As expected, smaller block sizes bring better accuracy compared to larger block sizes. The performance
improvement plateaus after the size reaches 256, which matches the numbers that INT8 can represent. Note
that although INT8 can represent 256 different numbers, there is still an activation quantization error since
we use uniform quantization.

5.3.1 Summary

With the comprehensive test on OPT and BLOOM model families, here is the summary:

• With fine-grained activation quantization, the quality degradation of symmetric and asymmetric schemes
is similar. For larger models (>10B), the difference between weight-and-activation quantization and
weight-only quantization is negligible.

• The benefit from fine-grained activation quantization vanishes when the block size reaches 256.
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Table 9: Results of W4asym-A16 quantization on BLOOM with various block-size out of the best result from
optimization-based methods. See Table D.16 for full results including RTN. N/A means that the block size is
not divisible by the hidden size.

Block-size 560m 1.1b 1.7b 3b 7.1b 176b

W16-A16 29.35 28.32 20.43 17.58 14.96 10.90

Per-row 31.08 30.85 21.38 18.33 15.50 11.02
1024 30.98 N/A 31.03 N/A 15.24 10.96
512 30.75 29.40 20.93 17.99 15.20 10.95
256 30.49 29.26 20.95 17.97 15.18 10.95
128 30.35 29.13 20.92 17.90 15.17 10.94
64 30.24 29.01 20.82 17.90 15.16 10.94
32 30.18 28.91 20.82 17.88 15.16 10.95

Table 10: Results of BLOOM-176B with different quantization bits See Table D.19 for full results. N/A
means that we did not perform the evaluation.

Bits 3 4 5 6 7 8

Per-row 49.46 11.02 10.93 10.90 10.90 10.90
1024 11.15 10.96 10.91 10.90 10.90 10.90
32 11.12 10.95 10.91 N/A N/A N/A

6 Future Opportunity and Conclusion
Future Opportunity Throughout the paper, we see several important but unresolved problems from
current quantization schemes and/or algorithms, and we find new potential directions for LLM compression:

• ZQ-Global used in the paper has worse accuracy than GPTQ even though it uses a larger training
subnetwork. This is very counter-intuitive since if we increase the subnetwork to the full network,
QAT (quantization-aware training) is performed which should have better performance. A further
understanding is needed and/or a better algorithm is needed.

• Although we use fine-grained quantization schemes in the paper, the real implementation is missing.

• How to efficiently implement odd bit precision is also challenging. [12] demonstrated that 3-bit can
achieve better throughput in the generation phase by packing all 3-bit numbers in continuous memory
space. However, this method is sub-optimal as the dequantization step needs to connect bits from
different bytes. One possible way to implement odd bits, e.g., 5 bits, is to use two integer matrices with
INT4 and INT1. During the dequantization stage, we couple the two matrices together.

• How to combine PTQ with other lightweight compression techniques, e.g., post-training pruning [18, 11],
is an interesting direction to further reduce the memory consumption and compute cost.
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Table 11: OPT W4asym-A8 with various block-size out of the best result from GPTQ, ZQ-Local, and
ZQ-Global. See Table D.20 for full results including RTN.

Quantization Scheme 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W16-A16 28.27 22.93 15.44 13.58 11.90 11.22 10.70 10.33
W4asym Per-row and A16 31.77 24.45 16.42 14.19 12.28 11.42 10.78 10.52
W4asym 128 and A16 30.04 23.99 15.85 13.83 12.10 11.28 10.74 10.44

W4asym full row and A8sym 128 31.85 24.56 16.48 14.22 12.31 11.42 10.76 10.63

W4asym 128 and A8sym 128 30.06 24.07 15.84 13.86 12.05 11.31 10.73 10.43

W4asym full row and A8asym 128 32.10 24.58 16.40 14.20 12.29 11.45 10.80 10.61

W4asym 128 and A8asym 128 30.16 24.02 15.86 13.84 12.04 11.31 10.75 10.45

Table 12: BLOOM W4asym-A8 with various block-size out of the best result from GPTQ, ZQ-Local, and
ZQ-Global. See Table D.21 for full results including RTN.

Quantization Scheme 560m 1.1b 1.7b 3b 7.1b 176b

W16-A16 29.35 28.32 20.43 17.58 14.96 10.90
W4asym Per-row and A16 31.08 30.85 21.38 18.33 15.50 11.02
W4asym 128 and A16 30.35 29.13 20.92 17.90 15.17 10.94

W4asym full row and A8sym 128 31.28 34.58 21.57 18.32 15.49 11.03

W4asym 128 and A8sym 128 30.45 29.29 20.95 17.92 15.19 10.95

W4asym full row and A8asym 128 31.24 34.64 21.59 18.31 15.52 11.03

W4asym 128 and A8asym 128 30.42 29.25 21.27 17.86 15.19 10.96

Conclusion In this work, we provide a comprehensive study (tens of thousands of zero-shot evaluations) of
post-training quantization (PTQ) on large language models with different quantization schemes (symmetric
vs. asymmetric), different PTQ methods (e.g., RTN, GPTQ, ZeroQuant), and different quantization coverage
(weight-only and weight-and-activation quantization), etc. We find that PTQ methods are critical to improving
the quantized model quality. Our results show that although fine-grained quantization can bring acceptable
accuracy and model size trade-off, the best way to maintain model quality is to use higher bits. We also list
several potential future directions and hope our work sheds some light on LLMs compression.
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Table B.1: Best optimization method of OPT family in Section 4.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

Weight Only (INT4) ZQ-Global ZQ-Global GPTQ GPTQ GPTQ GPTQ GPTQ GPTQ

Weight & Activation (W4A8) ZQ-Global ZQ-Global ZQ-Global GPTQ ZQ-Global ZQ-Global ZQ-Global ZQ-Local

Table B.2: Best optimization method of BLOOM family in Section 4.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

Weight Only (INT4) GPTQ ZQ-Global ZQ-Global ZQ-Global/GPTQ GPTQ GPTQ

Weight & Activation (W4A8) ZQ-Global ZQ-Global ZQ-Global ZQ-Global ZQ-Global ZQ-Local

A Detailed Setting Used in Section 4
Same as [12], for all methods, we use C4 dataset to randomly select 128 sentences for training and each of
them has 2048 tokens.

For GPTQ, we check its main hyperparameter, i.e., the dampening factor, and find out the method is not
sensitive to it. As such, we use the hyparameter suggested by the author for all of our experiments.

For ZQ-Global and ZQ-Local, as mentioned the in main text, the hyperparameters suggested by the
original work [30] is suboptimal. We find that a linear decay learning rate schedule is very helpful in our
initial test. As such, we add this as our default setting. Meanwhile, we extensively test a wide range (1e-3 to
5e-8) of learning rate for different models until we find the best learning rate (i.e., larger or smaller learning
rate leads to worse accuracy performance). We use Adam optimizer and a default batch size 1.

For all three methods, we run them on a single GPU (either V100-32GB or A100-80GB). For the largest
model tested in the paper, i.e., BLOOM-176B, the cost of all methods is lower than 1 GPU-day on A100-80G.

B Best PTQ Methods with Per-row Quantization
Table B.1 and B.2 summarize the best PTQ methods with per-row optimization.

C 3-bit Weight-only Quantization
We report W3A16 results of OPT and BLOOM in C.1 and C.2 with various quantization block sizes,
respectively. Similar to 4-bit quantization, smaller block size brings better accuracy. However, none of
the models can achieve Class-1 quantization error, and more importantly, 3-bit with block size 32, which
has similar actually bits as 4-bit per-row quantization (since block size 32 has one FP16 scaling factor and
one FP16 zeropoint), has worse performance than 4-bit per-row quantization, which demonstrates that
fine-grained quantization might be able to close the gap from the reduction of bits.

D Full results of Our Evaluation
We put the full results of our evaluations in this section.
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Table C.1: Results of W3asym-A16 quantization on OPT with various block-size out of the best result from
optimization-based methods. See Table D.17 for full results including RTN. N/A means that the block size is
not divisible by the hidden size.

Block-size 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W16-A16 28.27 22.93 15.44 13.58 11.90 11.22 10.70 10.33

Per-row 46.82 30.30 22.36 17.06 14.18 12.43 11.28 17.77
1024 N/A 29.62 20.16 N/A 12.90 11.74 11.03 12.95
512 N/A 28.65 18.94 15.47 12.82 11.67 10.97 12.33
256 38.85 27.92 17.95 15.10 12.79 11.63 10.90 11.34
128 36.80 26.97 17.61 15.05 12.69 11.59 10.91 11.27
64 35.48 26.76 17.40 14.85 12.58 11.62 10.92 10.97
32 33.75 26.38 17.11 14.73 12.64 11.70 10.99 10.95

Table C.2: Results of W3asym-A16 quantization on BLOOM with various block-size out of the best result
from optimization-based methods. See Table D.18 for full results including RTN. N/A means that the block
size is not divisible by the hidden size.

Block-size 560m 1.1b 1.7b 3b 7.1b 176b

W16-A16 29.35 28.32 20.43 17.58 14.96 10.90

Per-row 43.37 54.48 25.59 24.10 271.31 49.46
1024 38.10 N/A 24.24 N/A 16.68 11.15
512 35.20 33.75 23.58 19.58 16.21 11.15
256 34.43 32.46 23.08 19.31 16.15 11.13
128 33.49 31.95 22.62 18.98 15.96 11.10
64 33.26 31.51 22.41 18.91 15.86 11.10
32 32.93 31.34 22.15 18.95 15.85 11.12

Table D.1: OPT ppl on wikitext/ptb/c4 (full results of Table 2).

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W16-A16 27.65/32.55/24.61 22.00/26.08/20.71 14.62/16.97/14.72 12.47/15.11/13.17 10.86/13.09/11.74 10.13/12.34/11.20 9.56/11.84/10.69 9.34/11.36/10.28

W8A8sym-A16 27.64/32.53/24.65 22.06/26.10/20.72 14.63/16.98/14.73 12.48/15.13/13.17 10.85/13.11/11.75 10.12/12.34/11.20 9.55/11.85/10.70 9.34/11.36/10.29
W8asym-A16 27.71/32.58/24.64 22.04/26.12/20.73 14.67/16.99/14.73 12.50/15.14/13.17 10.86/13.11/11.75 10.11/12.34/11.20 9.55/11.84/10.69 9.35/11.36/10.29
W4sym-A16 45.89/53.68/36.68 25.95/31.11/23.94 19.85/23.61/18.90 22.86/30.01/22.29 12.41/17.05/13.62 11.06/14.90/12.23 10.18/13.26/11.86 57.73/134.91/98.51
W4asym-A16 36.71/44.76/30.92 25.51/30.90/23.86 19.38/21.95/17.93 17.92/22.48/18.32 11.91/15.39/13.01 10.67/13.53/12.07 10.10/13.13/11.33 20.24/48.45/25.86

W16-A8sym 27.96/32.57/24.69 22.06/26.42/20.95 15.21/18.18/15.81 12.98/16.01/13.89 20.99/25.94/31.18 3341.50/2618.38/3554.59 1681.48/2221.62/2241.53 2696.91/2647.41/2569.94
W16-A8asym 27.84/32.60/24.66 22.04/26.22/20.81 15.14/17.65/15.39 12.51/15.38/13.38 11.24/14.17/12.45 11.83/18.87/15.39 14.08/31.54/25.09 442.66/524.57/716.83
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Table D.2: BLOOM ppl on wikitext/ptb/c4 (full results of Table 3).

Precision 560m 1.1b 1.7b 3b 7.1b 176b

W16-A16 22.43/41.25/24.38 17.69/46.98/20.29 15.39/27.93/17.97 13.48/23.12/16.14 11.37/19.40/14.13 8.11/13.62/10.97

W8sym-A16 22.44/41.28/24.39 17.70/47.01/20.29 15.40/27.91/17.98 13.49/23.14/16.14 11.37/19.40/14.13 8.11/13.63/10.98
W8asym-A16 22.43/41.24/24.40 17.69/47.00/20.29 15.40/27.96/17.97 13.48/23.14/16.14 11.37/19.40/14.13 8.10/13.62/10.98
W4sym-A16 26.49/49.73/27.98 20.27/56.64/22.81 17.47/32.20/19.88 14.96/25.59/17.51 12.38/21.36/15.06 8.40/14.15/11.30
W4asym-A16 25.31/46.79/27.10 23.90/68.31/25.99 16.93/31.02/19.47 14.65/25.12/17.26 12.06/20.83/14.83 8.34/14.03/11.23

W16-A8sym 22.50/41.58/24.46 17.78/47.28/20.38 15.57/28.36/18.13 13.57/23.38/16.25 11.58/19.92/14.35 8.75/14.94/12.61
W16-A8asym 22.45/41.37/24.42 17.71/47.05/20.32 15.45/28.09/18.02 13.52/23.24/16.19 11.47/19.71/14.25 8.41/14.52/11.93

Table D.3: OPT ppl on wikitext/opt/c4 with W4asym-A16 (full table of Table 4). See Table D.4 for all
learning rate results of ZQ-Local and Table D.5 of ZQ-Global.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

RTN 36.71/44.76/30.92 25.51/30.90/23.86 19.38/21.95/17.93 17.92/22.48/18.32 11.91/15.39/13.01 10.67/13.53/12.07 10.10/13.13/11.33 20.24/48.45/25.86
GPTQ 32.52/40.25/27.78 23.50/29.14/22.41 15.52/18.16/15.56 13.02/15.84/13.73 11.16/13.59/12.08 10.29/12.61/11.35 9.61/11.95/10.79 9.54/11.67/10.52
ZQ-Local∗ 33.05/39.34/28.11 24.40/29.22/22.82 15.81/18.66/15.76 13.22/16.19/13.96 11.32/13.79/12.26 10.42/12.90/11.60 9.97/12.32/11.03 9.91/11.87/10.59
ZQ-Global∗ 31.44/36.66/27.21 23.32/28.05/21.98 15.46/18.31/15.67 13.03/16.04/13.83 11.30/13.69/12.17 10.38/12.85/11.62 9.90/12.24/10.99 9.62/11.81/10.61

Table D.4: OPT ppl on wikitext/opt/c4 with W4asym-A16 and ZQ-Local.

LR (W4asym-A16) 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

0.001 33.67/39.45/29.11 26.33/31.94/24.49 16.27/19.91/16.46 14.34/17.76/14.93 11.87/15.04/13.06 13.68/18.89/14.46 171.35/151.55/46.14 814.22/601.74/308.53
0.0005 32.76/39.51/28.64 25.88/30.95/23.96 16.29/19.82/16.27 14.16/17.65/14.79 11.92/15.23/12.95 10.93/13.82/12.03 10.23/13.46/11.44 10.10/12.27/10.81
0.0001 33.86/40.01/28.29 24.64/30.26/23.33 16.07/19.25/15.93 14.36/17.38/14.41 11.85/14.64/12.74 10.93/13.48/11.88 10.18/12.67/11.13 10.12/12.01/10.67
5e-05 33.05/39.34/28.11 25.42/29.65/23.22 15.79/19.16/15.88 13.70/16.80/14.16 11.71/14.32/12.41 10.75/13.38/11.77 9.95/12.54/11.09 10.02/11.89/10.64
1e-05 33.78/40.41/28.84 24.40/29.22/22.82 15.81/18.66/15.76 13.55/16.46/13.96 11.32/13.79/12.26 10.54/13.05/11.61 9.98/12.22/10.99 9.91/11.87/10.59
5e-06 34.47/41.04/29.02 24.50/29.27/23.00 16.01/18.73/15.91 13.22/16.19/13.96 11.33/13.86/12.29 10.42/12.90/11.60 9.86/12.33/10.97 9.97/11.86/10.60
1e-06 35.88/43.69/30.35 24.54/29.87/23.17 16.77/19.45/16.47 13.60/17.02/14.46 11.41/14.10/12.41 10.53/13.01/11.70 9.97/12.33/11.04 10.01/11.93/10.66

Table D.5: OPT ppl on wikitext/opt/c4 with W4asym-A16 and ZQ-Global. NaN here means the PPL is
larger than 1e6.

LR (W4asym-A16) 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

0.001 4057.13/2718.91/1247.78 5071.35/5229.93/687.35 12105.25/10154.73/7893.43 18965.76/17112.60/16316.31 60014.66/56041.86/78085.84 232421.09/98305.32/119762.73 93917.09/70170.34/51124.06 NaN
0.0005 31.94/38.61/27.17 27.11/33.91/24.07 10900.84/8322.65/8425.10 14412.30/8676.76/10154.55 18527.46/13530.12/13029.95 109006.53/62584.41/125349.50 303235.75/230599.62/430480.03 36439.32/30554.19/33756.93
0.0001 31.44/36.66/27.21 24.08/29.08/22.27 15.91/20.08/16.35 118.38/53.47/54.08 7604.92/5339.10/5161.49 12638.86/7639.95/8243.63 16276.68/9890.26/6176.27 8367.31/4728.13/5533.59
5e-05 31.97/36.93/27.12 23.55/28.06/22.02 15.82/18.65/15.65 13.40/16.44/13.97 26.54/25.67/17.60 909.99/316.82/370.84 6238.21/3291.04/3743.01 9296.98/6687.44/5363.29
1e-05 32.31/37.93/27.38 23.32/28.05/21.98 15.60/18.42/15.64 13.09/16.05/13.78 11.41/13.82/12.20 10.80/13.16/11.66 10.06/12.44/11.07 9.73/12.09/10.98
5e-06 32.69/38.91/27.76 23.26/28.33/22.05 15.46/18.31/15.67 13.03/16.04/13.83 11.30/13.69/12.17 10.50/12.89/11.58 9.95/12.28/11.01 9.62/11.81/10.61
1e-06 34.63/41.75/29.43 23.82/28.96/22.48 16.12/19.46/16.27 13.03/16.27/14.04 11.29/13.88/12.27 10.38/12.85/11.62 9.90/12.24/10.99 9.58/12.17/10.78
5e-07 NaN NaN NaN NaN NaN 10.51/12.96/11.70 9.89/12.41/11.04 9.90/12.45/11.00
1e-07 NaN NaN NaN NaN NaN 10.63/13.29/11.89 10.02/12.82/11.18 11.03/13.91/11.73
5e-08 NaN NaN NaN NaN NaN 10.66/13.42/11.97 10.05/13.00/11.24 12.41/17.45/13.02

Table D.6: BLOOM ppl on wikitext/opt/c4 with W4asym-A16 (full table of Table 5). See Table D.7 for all
learning rate results of ZQ-Local and Table D.8 of ZQ-Global.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

RTN 25.31/46.79/27.10 23.90/68.31/25.99 16.93/31.02/19.47 14.65/25.12/17.26 12.06/20.83/14.83 8.34/14.03/11.23
GPTQ 23.90/43.76/25.59 24.34/68.10/26.58 16.36/29.58/18.79 14.10/24.23/16.66 11.80/20.23/14.47 8.22/13.78/11.07
ZQ-Local∗ 24.23/44.94/26.05 19.22/52.36/21.59 16.37/29.89/18.86 14.23/24.41/16.86 11.80/20.28/14.56 8.27/13.91/11.16
ZQ-Global∗ 23.84/44.17/25.60 19.50/51.33/21.72 16.19/29.28/18.66 14.14/24.16/16.69 11.77/20.27/14.52 8.24/13.82/11.10

Table D.7: BLOOM ppl on wikitext/opt/c4 with W4asym-A16 and ZQ-Local.

LR (W4asym-A16) 560m 1.1b 1.7b 3b 7.1b 176b

0.001 25.37/47.36/27.03 19.89/53.86/22.11 16.70/31.19/19.30 14.45/25.28/17.16 12.22/21.34/15.04 8.82/15.77/11.98
0.0005 25.17/46.83/26.87 19.57/53.66/21.92 16.58/30.27/19.15 14.43/25.47/17.07 11.94/20.54/14.67 8.35/14.01/11.20
0.0001 24.59/46.11/26.32 19.22/52.36/21.59 16.41/30.29/18.90 14.35/24.81/16.87 11.83/20.34/14.58 8.28/13.92/11.14
5e-05 24.44/46.04/26.16 23.28/65.68/25.42 16.39/30.01/18.86 14.34/24.43/16.83 11.80/20.28/14.56 8.27/13.93/11.15
1e-05 24.23/44.94/26.05 23.45/66.29/25.52 16.37/29.89/18.86 14.23/24.41/16.86 11.84/20.39/14.58 8.27/13.91/11.16
5e-06 24.21/45.21/26.10 23.26/65.72/25.42 16.42/30.09/18.94 14.25/24.55/16.87 11.87/20.50/14.61 8.29/13.98/11.16
1e-06 24.71/45.86/26.50 23.45/66.28/25.56 16.64/30.52/19.15 14.46/24.76/17.04 11.94/20.55/14.70 8.29/13.97/11.18
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Table D.8: BLOOM ppl on wikitext/opt/c4 with W4asym-A16 and ZQ-Global.

LR (W4asym-A16) 560m 1.1b 1.7b 3b 7.1b 176b

0.001 6853935.00/30441738.00/3222857.25 528072.88/828428.62/356031.97 597410.50/973155.88/1280478.12 878460.69/2175974.25/441401.94 nan/nan/nan NaN
0.0005 29671.52/1795030.88/4653.35 28112.96/87515.64/1826.82 141110.14/204295.86/40146.11 265457.25/741326.38/99882.45 944784.19/774538.25/395960.03 NaN
0.0001 23.92/45.68/25.72 19.34/52.78/21.63 16.35/29.22/18.76 14.27/24.46/16.80 12.17/22.16/14.80 NaN
5e-05 23.84/44.17/25.60 19.50/51.33/21.72 16.19/29.28/18.66 14.14/24.16/16.69 11.81/20.41/14.50 NaN
1e-05 23.85/44.20/25.65 22.64/56.79/23.41 16.23/29.73/18.73 14.14/24.31/16.74 11.77/20.27/14.52 8.24/13.82/11.10
5e-06 24.02/44.62/25.79 23.46/63.27/24.88 16.28/29.83/18.81 14.19/24.38/16.80 11.77/20.33/14.54 8.24/13.82/11.10
1e-06 24.46/45.41/26.20 24.62/70.16/26.64 16.48/30.15/19.02 14.35/24.56/16.95 11.89/20.54/14.67 8.23/13.82/11.12
5e-07 NaN NaN NaN NaN NaN 8.26/13.86/11.13

Table D.9: OPT ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym (full table of Table 6). See Table D.10
for all learning rate results of ZQ-Local and Table D.11 of ZQ-Global.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W4asym-A8sym Block
RTN 36.69/44.34/30.60 26.59/32.13/24.81 25.31/26.89/22.01 30.84/35.73/29.01 164.51/110.85/162.94 4460.61/3145.51/4255.84 3216.45/2929.40/3570.19 3038.22/2930.92/3001.82
GPTQ 32.20/38.49/27.47 24.35/29.82/23.24 16.28/19.64/16.73 13.86/17.51/15.00 46.22/53.98/55.13 3611.71/2796.71/3820.57 1738.44/1810.08/2119.82 5992.87/4115.01/4360.16
ZQ-Local∗ 32.88/38.23/28.20 25.18/30.06/23.62 16.78/20.25/17.09 14.82/18.77/15.61 16.08/21.15/18.77 2680.33/1876.48/3052.51 1884.90/1603.23/1348.08 575.20/499.42/437.94
ZQ-Global∗ 32.04/37.48/27.23 24.01/28.81/22.57 16.12/19.15/16.23 13.98/17.70/14.87 38.27/39.77/52.26 117.83/141.63/96.83 253.71/700.40/337.15 1715.98/1546.50/1799.35

W4asym-A8asym Block
RTN 36.61/44.48/30.64 25.79/31.28/24.13 21.23/23.54/19.19 23.82/29.77/22.60 13.18/17.04/14.19 19.87/32.93/26.28 36.07/136.88/85.84 627.15/880.79/937.08
GPTQ 32.22/38.83/27.43 23.90/29.29/22.63 15.75/18.74/15.93 13.23/16.31/14.03 12.50/15.86/13.29 12.79/21.99/17.05 12.96/25.03/24.14 495.70/681.68/768.69
ZQ-Local∗ 33.60/38.57/28.02 24.57/29.27/22.98 15.98/19.13/16.20 13.44/16.81/14.26 11.76/14.97/13.00 11.69/16.98/14.01 12.38/24.25/18.96 12.19/23.31/13.47
ZQ-Global∗ 31.61/37.00/27.10 23.66/28.56/22.21 15.77/18.61/15.83 13.09/16.56/14.00 12.03/14.60/12.86 11.80/15.01/12.41 12.94/17.61/13.41 31.51/58.00/23.95

Table D.10: OPT ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym and ZQ-Local.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W4asym-A8sym Block
0.001 34.91/40.43/29.37 26.82/32.68/25.24 17.68/21.72/18.11 19.40/27.59/20.05 36.70/59.32/45.17 7240.89/5506.67/4889.34 8229.32/5068.14/5005.13 Diverge
0.0005 34.16/39.00/28.58 26.75/32.05/24.60 17.19/21.42/17.55 19.43/25.54/19.41 29.33/48.38/43.28 56836.57/36810.64/31073.67 5448.96/3826.63/3196.49 575.20/499.42/437.94
0.0001 32.88/38.23/28.20 25.31/31.60/23.98 16.93/20.77/17.36 17.05/21.50/17.42 25.24/31.66/26.82 6125.07/3817.01/4121.70 1884.90/1603.23/1348.08 5427.12/3449.58/3289.01
5e-05 32.86/39.17/27.91 25.91/31.24/24.07 16.99/20.02/17.23 15.07/19.00/15.54 16.08/21.15/18.77 6037.51/3617.64/3819.63 3266.46/2533.64/2463.21 11631.78/10489.81/7880.43
1e-05 34.00/39.76/28.62 25.40/30.60/23.75 16.87/20.26/17.11 14.82/18.77/15.61 26.60/32.09/28.76 5346.85/3788.29/4903.31 3364.70/2372.71/3370.97 5793.44/3544.90/3925.34
5e-06 34.37/41.46/28.71 25.18/30.06/23.62 16.78/20.25/17.09 14.87/19.42/15.86 34.53/39.98/38.22 2680.33/1876.48/3052.51 3566.45/2532.54/3678.75 4916.96/3783.69/3716.49
1e-06 36.05/43.46/30.00 25.73/30.69/24.05 19.58/22.57/19.04 18.66/24.19/19.98 77.99/62.27/83.19 3893.00/2672.11/3849.59 3233.72/2944.44/3732.18 4238.57/3621.09/3541.33

W4asym-A8asym Block
0.001 33.57/40.84/29.00 27.29/32.48/24.68 17.41/20.70/17.07 15.98/20.45/16.23 12.63/17.21/14.25 9889.96/7605.54/6328.91 2009.66/1637.69/2011.15 5070.07/3124.56/2683.19
0.0005 34.58/40.45/28.69 25.81/31.56/24.09 16.89/20.66/16.93 15.00/19.47/15.61 12.55/17.00/14.29 13.18/19.65/15.18 36.51/75.89/60.58 3249.10/63.17/119.55
0.0001 33.91/38.39/28.12 25.37/31.24/23.66 16.78/20.09/16.72 14.26/18.49/14.90 12.13/15.97/13.48 13.48/20.42/16.68 110.20/117.28/257.96 12.19/23.31/13.47
5e-05 33.60/38.57/28.02 24.67/29.60/23.34 16.31/19.56/16.42 13.90/19.16/15.05 12.30/15.95/13.56 12.05/18.00/15.77 37.68/59.83/124.75 29.72/95.99/69.60
1e-05 33.80/40.21/28.56 24.57/29.27/22.98 15.98/19.13/16.20 13.44/16.81/14.26 11.76/14.97/13.00 11.69/16.98/14.01 14.39/31.47/24.45 217.93/313.13/298.24
5e-06 34.62/41.07/28.93 24.68/29.46/23.12 16.26/19.23/16.27 13.44/17.00/14.36 11.96/14.86/13.10 12.31/18.55/15.16 12.38/24.25/18.96 85.96/185.07/180.88
1e-06 35.94/43.35/30.00 24.92/30.18/23.45 17.98/20.89/17.45 14.79/18.90/15.52 12.10/15.47/13.35 15.48/22.00/17.84 14.86/31.16/26.21 411.89/620.52/652.55

Table D.11: OPT ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym and ZQ-Global.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W4asym-A8sym Block
0.001 34.90/44.82/28.27 8988.08/5862.33/384.69 nan/nan/nan 18290.16/9784.37/12099.01 16014.50/8655.69/12304.55 248961.98/84832.78/104880.55 56675.05/23709.03/33007.17 29782.43/20410.10/23559.66
0.0005 31.78/38.56/27.20 39.24/54.15/29.76 10610.96/9438.99/6752.84 12499.29/8411.26/10677.01 nan/nan/nan 74731.13/44494.68/29286.49 51871.73/28548.95/23056.78 18717.63/11744.97/12903.33
0.0001 32.04/37.48/27.23 24.14/29.21/22.47 17.04/23.64/17.13 175.67/165.81/162.24 12305.50/11472.90/10223.89 16303.04/10731.12/10669.52 22548.81/12474.28/7405.46 7926.43/4377.36/4805.98
5e-05 32.16/37.54/27.27 24.15/28.87/22.46 16.02/19.61/16.59 13.88/20.27/14.79 5241.10/3284.47/2187.15 13297.25/7781.85/7467.30 9542.44/4543.45/5373.00 NaN
1e-05 32.57/38.43/27.53 24.01/28.81/22.57 16.12/19.15/16.23 13.98/17.70/14.87 99.27/118.19/88.74 529.82/361.44/256.46 1936.12/1388.68/947.45 10077.70/9208.34/11462.28
5e-06 32.83/38.37/27.71 24.13/29.30/22.68 16.45/19.64/16.57 14.42/18.01/15.27 70.26/62.28/54.47 373.82/494.33/170.40 820.90/847.19/543.59 1867.57/1878.76/4117.49
1e-06 34.79/41.79/29.30 24.68/30.01/23.23 17.90/21.94/18.01 14.83/18.63/15.70 38.27/39.77/52.26 117.83/141.63/96.83 261.19/844.40/272.04 1500.51/1275.54/1649.50
5e-07 NaN NaN NaN NaN NaN NaN 253.71/700.40/337.15 1715.98/1546.50/1799.35
1e-07 NaN NaN NaN NaN NaN NaN 913.95/1117.58/1065.87 2012.91/1917.48/1817.92

W4asym-A8asym Block
0.001 37.89/47.68/30.43 9023.01/4309.50/1186.96 12638.86/nan/9164.64 11285.86/6477.19/nan 12222.01/6933.34/8989.30 132962.69/73768.05/59268.76 328993.91/187752.97/163157.59 48298.52/30548.89/42797.96
0.0005 32.65/39.86/27.20 28.46/36.94/24.68 nan/nan/nan nan/nan/nan 23287.96/15508.32/16243.28 22052.30/10852.90/11588.02 63084.59/39919.41/42499.90 NaN
0.0001 31.61/37.00/27.10 24.64/29.13/22.28 16.31/19.71/16.44 43.76/29.11/33.35 22024.01/13962.04/14130.94 10171.49/7200.78/7954.12 18603.08/11639.42/10798.26 nan/nan/nan
5e-05 32.21/37.46/27.18 23.66/28.56/22.21 16.02/19.02/15.92 13.48/17.57/14.24 839.48/213.76/286.05 1035.13/nan/1472.08 8085.92/3545.21/4893.07 nan/nan/nan
1e-05 32.35/38.21/27.38 23.59/28.66/22.24 15.77/18.61/15.83 13.09/16.56/14.00 12.09/14.69/12.90 11.80/15.01/12.41 13.76/22.87/15.72 974.58/1557.95/1039.65
5e-06 32.59/38.49/27.68 23.62/28.63/22.33 15.78/18.80/15.95 13.23/16.65/14.12 12.03/14.60/12.86 12.72/16.31/13.20 12.94/17.61/13.41 83.35/137.83/128.11
1e-06 34.68/41.56/29.26 24.08/29.21/22.68 16.66/20.03/16.69 13.30/16.74/14.33 12.43/15.52/13.36 12.28/16.13/13.19 16.00/19.60/14.88 31.51/58.00/23.95
5e-07 NaN NaN NaN NaN NaN NaN NaN 31.09/73.23/24.44
1e-07 NaN NaN NaN NaN NaN NaN NaN 241.81/544.81/505.58

Table D.12: BLOOM ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym (full table of Table 7). See Table D.13
for all learning rate results of ZQ-Local and Table D.14 of ZQ-Global.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

W4asym-A8sym Block
RTN 25.56/47.53/27.31 24.80/70.99/26.71 17.36/31.95/19.89 14.82/25.63/17.47 12.33/21.62/15.13 9.12/15.58/14.04
GPTQ 24.13/44.79/25.86 25.69/68.65/27.08 16.63/30.54/19.12 14.18/24.42/16.82 12.04/21.07/14.75 8.92/15.16/13.56
ZQ-Local∗ 24.45/45.73/26.22 19.50/52.67/21.73 16.71/30.23/19.09 14.37/24.72/16.99 12.00/20.79/14.78 8.52/14.29/11.41
ZQ-Global∗ 23.93/44.31/25.68 19.71/51.98/21.85 16.34/29.36/18.82 14.13/24.34/16.76 11.84/20.58/14.59 8.76/14.60/11.68

W4asym-A8asym Block
RTN 25.37/46.99/27.16 24.08/68.95/26.17 17.12/31.46/19.67 14.74/25.38/17.37 12.22/21.36/15.00 8.73/15.10/12.83
GPTQ 24.09/44.29/25.66 24.50/67.37/26.62 16.39/29.83/18.91 14.13/24.47/16.73 11.91/20.72/14.62 8.55/14.74/12.31
ZQ-Local∗ 24.29/45.19/26.10 19.13/52.89/21.63 16.54/30.11/18.92 14.32/24.73/16.94 11.94/20.63/14.68 8.33/14.01/11.22
ZQ-Global∗ 23.86/44.16/25.62 19.54/51.72/21.79 16.23/29.40/18.68 14.15/24.29/16.72 11.80/20.37/14.56 8.62/14.40/11.49
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Table D.13: BLOOM ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym and ZQ-Local.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

W4asym-A8sym Block
0.001 25.51/47.89/27.15 19.73/54.63/22.18 16.96/31.47/19.44 14.59/25.69/17.32 12.51/21.85/15.34 8.62/14.42/11.50
0.0005 25.18/47.35/26.95 19.62/53.64/22.03 16.98/31.75/19.47 14.52/25.22/17.18 12.03/21.01/14.82 8.59/14.38/11.45
0.0001 24.79/46.37/26.44 19.50/52.67/21.73 16.68/30.51/19.18 14.44/25.12/17.05 12.00/20.79/14.78 8.52/14.29/11.41
5e-05 24.56/46.29/26.34 23.93/69.17/26.19 16.71/30.23/19.09 14.37/24.72/16.99 12.05/20.92/14.82 8.55/14.34/11.44
1e-05 24.45/45.73/26.22 23.65/66.73/25.80 16.66/30.69/19.16 14.40/24.94/17.02 12.12/21.14/14.86 8.65/14.97/12.01
5e-06 24.48/45.66/26.33 23.87/67.26/25.84 16.78/30.72/19.23 14.44/24.91/17.07 12.15/21.23/14.88 8.70/15.04/12.37
1e-06 24.91/46.35/26.72 24.09/68.13/26.05 17.03/31.28/19.52 14.60/25.18/17.24 12.22/21.31/14.99 8.91/15.25/13.35

W4asym-A8asym Block
0.001 25.26/46.43/26.98 19.69/54.26/22.14 16.88/32.16/19.40 15.15/26.58/17.76 12.40/22.29/15.28 8.40/14.06/11.26
0.0005 24.89/47.99/26.82 19.54/53.57/21.98 16.73/31.02/19.29 14.50/25.52/17.11 11.94/20.70/14.76 8.33/14.01/11.22
0.0001 24.60/45.75/26.44 19.13/52.89/21.63 16.54/30.36/19.10 14.37/24.91/16.93 11.94/20.63/14.68 8.35/14.04/11.24
5e-05 24.41/45.08/26.23 23.59/67.14/25.79 16.54/30.11/18.92 14.29/24.83/16.92 11.95/20.71/14.71 8.36/14.10/11.25
1e-05 24.29/45.19/26.10 23.35/65.26/25.38 16.51/30.20/19.00 14.32/24.73/16.94 11.97/20.93/14.74 8.44/14.30/11.45
5e-06 24.31/45.25/26.15 23.41/66.18/25.48 16.63/30.37/19.09 14.33/24.74/16.96 12.03/20.95/14.78 8.52/14.66/11.86
1e-06 24.76/45.92/26.62 23.52/66.38/25.66 16.81/30.71/19.30 14.53/24.92/17.14 12.10/21.07/14.87 8.62/14.92/12.41

Table D.14: BLOOM ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym and ZQ-Global.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

W4asym-A8sym Block
0.001 174250016.00/201477664.00/1348168.88 423532.56/906908.06/322995.69 573201.81/1089364.38/498071.91 544376.56/696942.56/540949.06 nan/nan/nan NaN
0.0005 70978.52/29214230.00/1151.72 2880.81/15732.60/309.13 505479.44/629035.56/29283.36 140595.53/181082.25/33785.79 378033.53/789890.00/191543.91 NaN
0.0001 24.04/45.38/25.83 19.44/52.38/21.77 16.34/29.36/18.82 14.32/24.74/16.88 12.12/22.00/14.80 249.47/26690.76/26.96
5e-05 23.93/44.31/25.68 19.71/51.98/21.85 16.18/29.71/18.71 14.13/24.34/16.76 11.84/20.58/14.59 9.00/15.57/11.61
1e-05 23.99/44.44/25.77 22.75/58.31/23.63 16.28/29.96/18.81 14.29/24.53/16.87 11.87/20.57/14.64 8.76/14.60/11.68
5e-06 24.14/44.77/25.90 23.90/64.81/25.29 16.36/30.03/18.91 14.32/24.68/16.95 11.91/20.60/14.71 9.07/15.12/11.98
1e-06 24.62/45.70/26.33 25.55/71.49/27.44 16.61/30.47/19.17 14.51/24.91/17.11 12.06/20.93/14.86 11.25/19.93/15.76

W4asym-A8asym Block
0.001 9059092.00/2932002.50/131873960.00 499829.19/393190.53/346682.47 1260531.12/2019747.88/460627.16 1022130.19/872164.88/679662.62 nan/nan/nan NaN
0.0005 7633.14/378055.53/1032.16 4271.83/85847.50/1555.66 87087.04/217513.30/37000.13 575008.56/814032.50/230285.80 1212241.00/2389840.25/1504266.50 NaN
0.0001 23.96/45.36/25.80 19.37/52.25/21.88 16.29/29.36/18.81 14.32/24.66/16.86 12.05/22.30/14.77 1400.84/11880.12/392.79
5e-05 23.86/44.16/25.62 19.54/51.72/21.79 16.23/29.40/18.68 14.15/24.29/16.72 11.82/20.44/14.54 8.73/20.30/11.41
1e-05 23.96/44.24/25.72 22.55/58.10/23.49 16.27/29.82/18.78 14.16/24.35/16.80 11.80/20.37/14.56 8.62/14.40/11.49
5e-06 24.01/44.68/25.83 23.67/64.20/25.08 16.30/29.96/18.85 14.24/24.49/16.86 11.81/20.50/14.60 8.69/14.56/11.58
1e-06 24.53/45.60/26.26 24.82/71.17/26.84 16.55/30.35/19.10 14.40/24.76/17.01 11.97/20.83/14.77 9.14/16.63/17.69

Table D.15: OPT full results of Table 8.

Method 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

BS=1024
RTN N/A 25.42/30.62/23.61 16.90/19.78/16.59 N/A 11.63/14.41/12.65 10.47/13.09/11.75 9.97/12.40/11.09 9.83/12.31/10.77

N/A 26.55 17.76 N/A 12.90 11.77 11.15 10.97
GPTQ N/A 23.65/29.09/22.43 15.16/18.00/15.34 N/A 11.10/13.40/11.99 10.28/12.49/11.29 9.58/11.91/10.75 9.56/11.61/10.44

N/A 25.05 16.17 N/A 12.16 11.36 10.75 10.54
ZQ-Global∗ N/A 23.27/27.97/21.93 12.93/15.90/13.64 N/A 10.98/13.60/12.04 10.33/12.69/11.50 9.78/12.16/10.90 9.52/11.58/10.46

N/A 24.39 16.18 N/A 12.21 11.50 10.95 10.52

BS=512
RTN N/A 25.05/29.74/23.21 15.71/19.05/16.09 13.67/16.93/14.23 11.32/14.22/12.50 10.45/12.99/11.68 10.03/12.27/11.03 9.83/12.15/10.67

N/A 26.00 16.95 14.94 12.68 11.71 11.11 10.89
GPTQ N/A 23.33/28.48/22.13 15.15/17.95/15.26 12.65/15.61/13.53 10.94/13.37/11.94 10.18/12.49/11.29 9.58/11.87/10.75 9.53/11.59/10.43

N/A 24.65 16.12 13.93 12.08 11.32 10.73 10.52
ZQ-Global∗ N/A 23.41/27.67/21.92 14.91/17.73/15.25 12.92/15.59/13.55 11.08/13.51/11.99 10.29/12.68/11.46 9.79/12.16/10.87 9.51/11.65/10.44

N/A 24.34 15.97 14.02 12.19 11.48 10.94 10.53

BS=256
RTN 31.62/38.19/27.62 24.76/29.44/22.96 15.54/18.96/15.90 13.56/16.62/14.02 11.19/14.12/12.40 10.39/12.93/11.61 9.95/12.24/10.98 9.70/12.09/10.62

32.48 25.72 16.80 14.73 12.57 11.64 11.06 10.80
GPTQ 30.56/37.20/26.68 23.37/28.33/21.97 14.95/17.63/15.16 12.59/15.60/13.49 10.93/13.29/11.92 10.15/12.43/11.27 9.58/11.91/10.74 9.49/11.60/10.40

31.48 24.56 15.91 13.89 12.05 11.28 10.74 10.50
ZQ-Global∗ 30.45/35.35/26.24 23.06/27.72/21.74 14.93/17.45/15.15 12.99/15.47/13.50 10.96/13.45/12.00 10.25/12.61/11.43 9.73/12.14/10.89 9.49/11.58/10.42

30.68 24.17 15.84 13.99 12.14 11.43 10.92 10.50

BS=128
RTN 30.62/36.67/27.10 24.12/29.34/22.70 15.35/18.52/15.66 13.19/16.24/13.88 11.11/13.94/12.28 10.31/12.82/11.54 9.93/12.12/10.93 9.56/11.85/10.56

31.47 25.39 16.51 14.43 12.44 11.56 11.00 10.65
GPTQ 30.76/36.13/26.52 23.29/27.94/21.98 14.93/17.51/15.10 12.49/15.59/13.46 10.87/13.34/11.90 10.11/12.47/11.27 9.60/11.88/10.73 9.44/11.53/10.40

31.14 24.40 15.85 13.85 12.03 11.28 10.74 10.45
ZQ-Global∗ 29.52/34.63/25.98 22.78/27.56/21.65 15.02/17.50/15.07 12.67/15.37/13.45 10.92/13.42/11.96 10.16/12.61/11.41 9.74/12.01/10.82 9.43/11.49/10.40

30.04 23.99 15.86 13.83 12.10 11.39 10.86 10.44

BS=64
RTN 30.74/36.68/26.87 24.28/28.95/22.59 15.21/18.15/15.47 13.20/16.13/13.75 11.01/13.71/12.17 10.27/12.79/11.49 9.82/12.05/10.89 9.46/11.70/10.49

31.43 25.27 16.28 14.36 12.30 11.52 10.92 10.55
GPTQ 30.25/35.72/26.43 23.39/27.55/21.75 14.81/17.40/15.06 12.54/15.54/13.44 10.87/13.29/11.89 10.09/12.44/11.27 9.55/11.89/10.72 9.33/11.49/10.38

30.80 24.23 15.76 13.84 12.02 11.27 10.72 10.40
ZQ-Global∗ 29.69/34.24/25.72 22.94/27.49/21.54 14.90/17.43/15.01 12.80/15.47/13.44 10.92/13.33/11.93 10.21/12.58/11.38 9.69/12.01/10.81 9.41/11.49/10.39

29.88 23.99 15.78 13.90 12.06 11.39 10.84 10.43

BS=32
RTN 30.48/36.32/26.64 23.88/28.66/22.36 14.99/17.87/15.32 12.89/16.00/13.67 10.89/13.70/12.13 10.32/12.73/11.45 9.76/12.00/10.85 9.56/11.55/10.44

31.14 24.97 16.06 14.18 12.24 11.50 10.87 10.52
GPTQ 29.13/34.89/25.90 23.09/27.59/21.65 14.80/17.41/15.04 12.45/15.55/13.42 10.89/13.32/11.89 10.08/12.48/11.27 9.51/11.92/10.73 Diverge

29.97 24.11 15.75 13.81 12.03 11.28 10.72 Diverge
ZQ-Global∗ 28.93/34.29/25.63 22.85/27.23/21.50 14.80/17.34/14.99 12.74/15.32/13.40 10.82/13.36/11.91 10.23/12.61/11.37 9.68/11.95/10.80 9.37/11.47/10.38

29.62 23.86 15.71 13.82 12.03 11.41 10.81 10.41
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Table D.16: BLOOM W4asym-A16 with various block-size out of the best result from GPTQ and ZQ-Global.
See Table 9.

Method 560m 1.1b 1.7b 3b 7.1b 176b

BS=1024
RTN 24.90/46.37/26.68 N/A 16.57/30.14/19.00 N/A 1019.51/1351.45/601.35 53.41/160.05/43.64

32.65 N/A 21.90 N/A 990.77 85.70
GPTQ 23.90/43.99/25.47 N/A 16.12/29.13/18.61 N/A 11.57/19.82/14.33 8.16/13.70/11.02

31.12 N/A 21.29 N/A 15.24 10.96
ZQ-Global 23.62/43.90/25.41 N/A 15.98/28.67/18.44 N/A 11.91/20.84/14.58 8.23/13.94/11.09

30.98 N/A 21.03 N/A 15.78 11.09

BS=512
RTN 24.78/46.07/26.45 19.41/53.64/21.85 16.47/29.84/18.88 14.29/24.84/17.05 142.38/314.10/100.09 33.88/103.57/31.02

32.44 31.63 21.73 18.73 185.52 56.16
GPTQ 23.63/43.96/25.36 18.52/49.73/20.91 16.07/29.87/18.50 13.79/23.77/16.41 11.54/19.75/14.30 8.14/13.70/11.02

30.98 29.72 21.48 17.99 15.20 10.95
ZQ-Global 23.50/43.53/25.23 18.31/49.06/20.82 15.93/28.47/18.38 13.82/23.92/16.47 11.85/20.17/14.42 8.20/13.86/11.07

30.75 29.40 20.93 18.07 15.48 11.04

BS=256
RTN 24.09/45.13/26.02 18.87/52.29/21.44 16.27/29.72/18.76 14.16/24.42/16.90 121.09/281.67/88.59 12.55/27.29/15.60

31.75 30.87 21.58 18.49 163.78 18.48
GPTQ 23.31/43.43/25.12 18.36/49.13/20.79 16.07/29.10/18.46 13.76/23.61/16.38 11.55/19.72/14.29 8.14/13.70/11.01

30.62 29.42 21.21 17.92 15.18 10.95
ZQ-Global 23.17/43.16/25.13 18.24/48.78/20.75 15.81/28.71/18.32 13.79/23.69/16.42 11.59/19.92/14.36 8.17/13.80/11.06

30.49 29.26 20.95 17.97 15.29 11.01

BS=128
RTN 23.82/44.78/25.75 18.62/51.31/21.17 16.13/29.89/18.66 14.00/24.19/16.71 23.90/49.80/24.15 8.84/15.62/11.70

31.45 30.37 21.56 18.30 32.62 12.06
GPTQ 23.27/43.10/24.99 18.14/48.72/20.73 16.03/28.96/18.41 13.72/23.65/16.34 11.52/19.73/14.26 8.14/13.67/11.01

30.45 29.20 21.13 17.90 15.17 10.94
ZQ-Global 23.14/42.95/24.97 18.17/48.53/20.70 15.75/28.71/18.29 13.73/23.65/16.37 11.56/19.77/14.32 8.17/13.78/11.03

30.35 29.13 20.92 17.92 15.22 10.99

BS=64
RTN 23.65/44.04/25.51 18.53/50.02/21.03 16.06/29.57/18.60 13.93/23.95/16.60 11.85/20.51/14.65 8.31/14.14/11.18

31.07 29.86 21.41 18.16 15.67 11.21
GPTQ 23.11/42.95/24.94 18.14/48.87/20.65 16.00/28.91/18.38 13.72/23.68/16.33 11.51/19.70/14.27 8.14/13.69/11.00

30.33 29.22 21.10 17.91 15.16 10.94
ZQ-Global 23.00/42.80/24.91 18.10/48.30/20.64 15.68/28.55/18.25 13.70/23.63/16.36 11.53/19.67/14.27 8.17/13.72/11.02

30.24 29.01 20.82 17.90 15.16 10.97

BS=32
RTN 23.60/43.91/25.50 18.63/50.13/21.04 15.98/29.56/18.56 13.92/23.90/16.53 11.65/20.01/14.43 8.20/13.86/11.07

31.00 29.93 21.37 18.12 15.36 11.04
GPTQ 23.10/43.19/24.91 18.17/48.35/20.66 15.95/28.95/18.36 13.76/23.60/16.33 11.53/19.71/14.27 8.14/13.70/11.00

30.40 29.06 21.08 17.89 15.17 10.95
ZQ-Global 23.07/42.63/24.82 18.07/48.07/20.59 15.66/28.58/18.21 13.72/23.59/16.33 11.52/19.71/14.26 8.16/13.69/11.01

30.18 28.91 20.82 17.88 15.16 10.95
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Table D.17: OPT full results of Table C.1.

Method 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

Full Row
RTN 2095.20/1848.83/1222.00 47.43/53.38/36.93 4399.18/4400.98/3551.88 8326.78/4208.57/4895.83 878.00/735.86/910.10 1953.43/1953.60/1669.76 439.39/691.94/437.96 1465.06/1564.59/1282.58

1722.01 45.91 4117.35 5810.40 841.32 1858.93 523.09 1437.41
GPTQ 845.81/599.71/496.14 30.65/34.09/26.15 20.23/27.39/19.45 15.91/19.26/16.01 12.69/15.90/13.96 11.36/13.71/12.21 10.10/12.54/11.20 16.77/21.16/15.39

647.22 30.30 22.36 17.06 14.18 12.43 11.28 17.77
ZQ-Global∗ 46.47/58.55/35.45 29.64/36.51/25.55 32.48/94.57/28.97 60.91/116.22/36.45 23.87/29.75/23.88 44.70/60.78/46.18 13.16/20.49/13.48 28.93/75.91/27.28

46.82 30.57 52.01 71.19 25.83 50.55 15.71 44.04

BS=1024
RTN N/A 44.57/49.58/35.09 1950.00/2317.55/1913.55 3810.79/2563.06/3054.91 50.01/70.17/99.21 265.62/417.03/261.93 362.47/252.33/364.45 523.81/846.60/1021.17

N/A 43.08 2060.37 3142.92 73.13 314.86 326.42 797.20
GPTQ N/A 29.78/33.76/25.66 19.03/23.32/18.14 N/A 11.69/14.31/12.70 10.56/12.96/11.70 9.89/12.19/11.02 12.84/16.17/13.02

N/A 29.73 20.16 N/A 12.90 11.74 11.03 14.01
ZQ-Global∗ N/A 29.19/34.57/25.11 19.83/29.77/19.79 N/A 13.99/18.82/14.76 13.43/19.28/13.76 11.10/14.46/11.94 11.87/14.86/12.13

N/A 29.62 23.13 N/A 15.86 15.49 12.50 12.95

BS=512
RTN N/A 37.74/45.10/31.85 1777.53/1304.55/852.03 1604.07/1407.49/1487.78 25.13/40.56/40.08 130.75/175.33/135.67 620.53/340.68/416.28 198.01/457.78/426.15

N/A 38.23 1311.37 1499.78 35.26 147.25 459.16 360.65
GPTQ N/A 28.46/32.54/25.14 18.02/21.35/17.46 14.38/17.24/14.79 11.57/14.33/12.57 10.41/12.97/11.64 9.77/12.18/10.97 11.89/14.48/12.40

N/A 28.71 18.94 15.47 12.82 11.67 10.97 12.92
ZQ-Global∗ N/A 27.81/33.57/24.55 18.31/23.54/17.99 18.10/29.47/17.15 12.54/16.60/13.62 11.82/15.98/12.81 10.48/13.36/11.66 11.26/13.95/11.79

N/A 28.65 19.95 21.57 14.25 13.54 11.83 12.33

BS=256
RTN 4349.14/2907.61/2510.75 35.36/42.07/30.81 127.17/358.19/142.49 670.51/550.66/531.80 19.10/32.39/27.26 42.52/56.35/43.32 32.84/60.38/33.48 210.01/478.13/413.00

3255.84 36.08 209.28 584.32 26.25 47.40 42.23 367.05
GPTQ 41.81/49.95/32.48 27.60/33.73/24.88 16.97/20.19/16.70 13.69/17.06/14.54 11.65/14.24/12.48 10.35/12.93/11.61 9.66/12.10/10.93 11.60/13.98/11.92

41.41 28.74 17.95 15.10 12.79 11.63 10.90 12.50
ZQ-Global∗ 38.60/46.57/31.36 26.88/32.79/24.08 16.82/21.21/17.05 14.86/19.63/15.37 11.86/15.87/13.10 11.33/14.95/12.48 10.41/12.95/11.41 10.26/12.66/11.08

38.85 27.92 18.36 16.62 13.61 12.92 11.59 11.34

BS=128
RTN 3446.89/2156.26/1484.15 33.13/41.23/29.51 49.40/88.45/45.07 153.68/155.21/113.98 16.34/26.86/21.98 17.80/25.95/18.28 45.83/43.91/57.50 106.84/241.02/212.94

2362.43 34.62 60.97 140.96 21.72 20.67 49.08 186.93
GPTQ 40.00/45.73/31.15 27.68/34.04/25.18 16.47/19.90/16.47 13.81/16.96/14.37 11.57/14.10/12.41 10.35/12.84/11.58 9.73/12.08/10.91 10.96/13.27/11.45

38.96 28.97 17.61 15.05 12.69 11.59 10.91 11.90
ZQ-Global∗ 36.57/43.88/29.94 25.75/31.59/23.57 16.28/20.20/16.67 14.27/18.41/14.90 11.70/15.05/12.68 11.13/15.07/12.17 10.31/12.99/11.32 10.12/12.66/11.01

36.80 26.97 17.72 15.86 13.14 12.79 11.54 11.27

BS=64
RTN 708.02/477.13/287.03 32.61/42.14/29.09 25.43/38.84/24.63 72.84/69.27/48.07 14.11/21.71/16.56 14.13/20.08/15.25 20.55/32.74/24.49 30.66/70.73/65.57

490.73 34.61 29.63 63.39 17.46 16.48 25.93 55.65
GPTQ 37.15/42.59/30.07 27.68/33.55/25.12 16.25/19.80/16.32 13.66/16.69/14.37 11.42/13.98/12.37 10.37/12.90/11.58 9.68/12.17/10.92 10.39/12.65/11.15

36.60 28.78 17.46 14.91 12.59 11.62 10.92 11.40
ZQ-Global∗ 35.82/40.98/29.65 25.31/31.60/23.38 16.05/19.77/16.39 13.33/16.92/14.31 11.56/14.70/12.59 10.88/13.64/12.04 10.04/12.70/11.27 10.04/12.06/10.81

35.48 26.76 17.40 14.85 12.95 12.19 11.34 10.97

BS=32
RTN 72.83/88.62/54.25 32.36/40.76/29.06 20.22/27.31/19.81 31.12/42.01/26.83 13.38/18.56/15.44 13.06/18.35/14.38 11.12/15.05/12.35 19.29/43.61/34.10

71.90 34.06 22.44 33.32 15.79 15.26 12.84 32.33
GPTQ 38.26/45.01/30.92 27.16/33.65/24.97 16.13/19.83/16.45 13.66/17.06/14.50 11.43/14.08/12.42 10.48/12.96/11.65 9.78/12.24/10.96 Diverge

38.06 28.59 17.47 15.07 12.64 11.70 10.99 Diverge
ZQ-Global∗ 33.44/39.48/28.33 25.19/30.73/23.22 15.62/19.52/16.20 13.35/16.64/14.18 11.56/14.38/12.61 10.86/13.64/12.03 10.25/12.86/11.28 9.99/12.05/10.81

33.75 26.38 17.11 14.73 12.85 12.17 11.46 10.95
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Table D.18: BLOOM W3asym-A16 with various block-size out of the best result from GPTQ and ZQ-Global.
See Table C.2.

Method 560m 1.1b 1.7b 3b 7.1b 176b
Full row
RTN 68.45/132.83/59.22 118.61/317.41/99.65 31.15/67.23/34.02 31.07/59.03/32.17 66140.72/78568.16/44504.19 100371.84/166012.19/137892.34

86.83 178.56 44.14 40.76 63071.02 134758.79
GPTQ 46.92/84.69/39.50 49.78/142.95/43.84 19.70/41.35/21.74 22.84/46.49/22.90 52966.59/52979.88/37115.48 Diverge

57.04 78.85 27.59 30.74 47687.32 Diverge
ZQ-Global 33.20/64.61/32.30 34.16/100.05/29.22 19.22/36.30/21.25 18.41/33.10/20.79 273.55/439.59/100.79 27.19/75.74/45.45

43.37 54.48 25.59 24.10 271.31 49.46

BS=1024
RTN 47.00/86.57/43.37 70.81/230.74/70.78 35.41/65.75/33.54 22.12/40.65/24.55 25654.77/25531.66/15868.46 141324.41/183583.73/200436.33

58.98 124.11 44.90 29.11 22351.63 175114.82
GPTQ 31.25/58.80/30.94 N/A 19.11/37.07/20.90 N/A 12.59/21.95/15.21 8.31/13.96/11.17

40.33 N/A 25.69 N/A 16.58 11.15
ZQ-Global 28.91/55.81/29.59 N/A 18.20/34.13/20.40 N/A 30.94/119.98/21.39 15.98/32.85/19.85

38.10 N/A 24.24 N/A 57.44 22.89

BS=512
RTN 41.58/79.83/39.41 33.83/116.88/37.34 25.95/49.65/26.77 19.94/38.58/22.58 9777.49/8000.29/5407.46 202051.34/273707.81/279776.97

53.61 62.68 34.12 27.03 7728.41 251845.38
GPTQ 28.08/53.15/29.05 21.20/61.42/23.33 18.41/34.47/20.43 15.08/26.14/17.53 12.32/21.29/15.01 8.30/13.98/11.16

36.76 35.32 24.44 19.58 16.21 11.15
ZQ-Global 26.80/50.49/28.31 20.77/57.57/22.89 17.64/33.19/19.91 15.16/26.51/17.57 16.35/28.75/15.76 11.38/20.36/14.66

35.20 33.75 23.58 19.75 20.29 15.47

BS=256
RTN 36.13/70.37/36.29 28.65/95.72/31.80 21.67/42.59/23.80 17.64/32.82/20.69 1322.61/1864.55/946.92 166006.80/187829.98/198052.83

47.60 52.06 29.35 23.72 1378.02 183963.20
GPTQ 27.10/51.11/28.24 20.60/56.57/22.77 17.97/33.28/20.04 14.82/25.79/17.31 12.27/21.24/14.93 8.27/13.99/11.14

35.48 33.31 23.76 19.31 16.15 11.13
ZQ-Global 25.96/49.75/27.59 20.21/54.83/22.33 17.43/32.14/19.67 14.85/25.79/17.33 12.85/22.00/15.04 9.07/15.88/11.88

34.43 32.46 23.08 19.32 16.63 12.28

BS=128
RTN 34.71/66.56/35.27 24.43/73.77/26.90 19.59/37.22/21.98 16.11/28.81/18.89 108.32/252.15/74.42 111057.84/101926.99/105339.26

45.51 41.70 26.26 21.27 144.96 106108.03
GPTQ 26.29/49.86/27.54 20.26/55.76/22.42 17.77/32.65/19.92 14.58/25.25/17.11 12.18/21.06/14.86 8.26/13.92/11.12

34.56 32.81 23.45 18.98 16.03 11.10
ZQ-Global 25.28/48.24/26.96 19.79/54.04/22.03 17.12/31.42/19.31 14.62/25.73/17.17 12.04/21.02/14.82 8.43/14.44/11.29

33.49 31.95 22.62 19.17 15.96 11.39

BS=64
RTN 30.88/59.01/32.08 23.04/67.93/25.49 19.35/37.67/21.80 15.64/27.56/18.39 37.15/65.22/33.22 198.66/488.11/128.62

40.66 38.82 26.27 20.53 45.20 271.80
GPTQ 26.31/49.91/27.17 20.11/55.06/22.23 17.94/32.42/19.76 14.62/25.39/17.07 12.13/21.07/14.83 8.26/13.93/11.11

34.46 32.47 23.37 19.02 16.01 11.10
ZQ-Global 25.17/48.01/26.59 19.51/53.27/21.75 16.88/31.14/19.22 14.51/25.18/17.05 12.00/20.85/14.74 8.35/14.06/11.20

33.26 31.51 22.41 18.91 15.86 11.21

BS=32
RTN 30.15/57.55/31.51 23.49/70.15/25.56 18.96/36.54/21.42 15.56/27.48/18.32 13.06/23.77/16.05 10.28/18.90/13.27

39.74 39.73 25.64 20.46 17.62 14.15
GPTQ 25.96/49.99/27.06 19.97/54.79/22.16 17.60/32.24/19.76 14.55/25.76/17.06 12.20/21.01/14.85 8.28/13.95/11.13

34.33 32.31 23.20 19.12 16.02 11.12
ZQ-Global 25.09/47.36/26.34 19.43/52.95/21.64 16.86/30.49/19.11 14.50/25.36/16.99 12.00/20.84/14.72 8.35/14.04/11.20

32.93 31.34 22.15 18.95 15.85 11.20

Table D.19: Full results of BLOOM-176B with different quantization bits

Bits 3 4 5 6 7 8

Per-row 27.19/75.74/45.45 8.16/13.70/11.02 8.13/13.67/10.99 8.11/13.63/10.98 8.11/13.62/10.97 8.10/13.62/10.98
1024 8.31/13.96/11.17 8.14/13.70/11.02 8.11/13.62/10.97 8.11/13.62/10.97 8.11/13.63/10.97 N/A
64 8.26/13.93/11.11 8.14/13.69/11.00 8.11/13.62/10.96 N/A N/A N/A
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Table D.20: OPT full results of Table 11.

Method 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W4asym full row and A8sym 128
RTN 36.64/44.84/30.90 25.58/31.06/23.99 19.96/22.31/18.20 18.42/23.01/18.56 12.04/15.92/13.20 10.79/13.65/12.11 10.10/13.17/11.37 20.50/45.58/25.37

37.46 26.88 20.16 20.00 13.72 12.18 11.54 30.48
GPTQ 31.82/38.82/27.54 23.78/28.96/22.61 15.56/18.27/15.62 13.02/15.88/13.76 11.22/13.59/12.11 10.25/12.65/11.37 9.56/11.94/10.79 9.62/11.72/10.54

32.73 25.12 16.48 14.22 12.31 11.42 10.76 10.63
ZQ-Local 9.79/11.94/10.65

10.79
ZQ-Global 31.69/36.66/27.19 23.47/28.18/22.03 15.53/18.35/15.73 13.02/16.11/13.82 11.29/13.70/12.19 10.43/12.91/11.64 9.86/12.28/11.00 9.62/11.84/10.63

31.85 24.56 16.54 14.32 12.39 11.66 11.05 10.70

W4asym 128 and A8sym 128
RTN 30.61/36.57/27.08 24.14/29.47/22.80 15.46/18.68/15.77 13.24/16.36/13.95 11.16/14.08/12.35 10.35/12.89/11.57 9.95/12.15/10.95 9.58/11.90/10.58

31.42 25.47 16.64 14.52 12.53 11.60 11.02 10.69
GPTQ 30.47/36.45/26.45 23.43/28.12/22.06 14.90/17.62/15.17 12.51/15.63/13.48 10.88/13.35/11.93 10.17/12.48/11.28 9.58/11.86/10.74 9.35/11.54/10.40

31.12 24.54 15.90 13.87 12.05 11.31 10.73 10.43
ZQ-Local 9.40/11.63/10.51

10.51
ZQ-Global 29.59/34.68/25.91 22.59/27.93/21.68 14.87/17.55/15.11 12.65/15.45/13.48 10.88/13.40/11.94 10.20/12.67/11.43 9.74/12.03/10.83 9.40/11.51/10.42

30.06 24.07 15.84 13.86 12.08 11.43 10.87 10.44

W4asym full row and A8asym 128
RTN 36.61/44.71/30.85 25.50/30.93/23.88 19.58/22.08/18.01 19.53/24.38/19.68 11.91/15.35/13.01 10.68/13.50/12.02 10.13/13.21/11.37 17.90/32.15/20.02

37.39 26.77 19.89 21.20 13.42 12.07 11.57 23.36
GPTQ 32.15/39.58/27.65 23.48/28.92/22.46 15.43/18.24/15.55 12.92/15.94/13.74 11.17/13.59/12.09 10.35/12.63/11.36 9.65/11.95/10.79 9.58/11.71/10.55

33.13 24.95 16.40 14.20 12.29 11.45 10.80 10.61
ZQ-Local 10.05/11.91/10.61

10.86
ZQ-Global 31.55/37.49/27.25 23.34/28.33/22.08 15.52/18.55/15.61 13.07/16.09/13.82 11.32/13.65/12.16 10.42/12.86/11.63 9.86/12.30/11.00 9.67/12.22/10.86

32.10 24.58 16.56 14.33 12.37 11.64 11.05 10.91

W4asym 128 and A8asym 128
RTN 30.59/36.56/27.07 24.11/29.43/22.74 15.38/18.57/15.69 13.22/16.32/13.91 11.13/13.97/12.30 10.34/12.82/11.55 9.98/12.15/10.96 9.57/11.86/10.58

31.41 25.43 16.55 14.49 12.47 11.57 11.03 10.67
GPTQ 30.47/36.19/26.40 23.35/27.96/21.94 14.92/17.57/15.12 12.48/15.60/13.46 10.87/13.34/11.91 10.20/12.45/11.28 9.62/11.88/10.74 9.39/11.55/10.41

31.02 24.42 15.87 13.85 12.04 11.31 10.75 10.45
ZQ-Local 9.37/11.70/10.49

10.52
ZQ-Global 29.85/34.52/26.10 22.70/27.72/21.64 14.96/17.55/15.09 12.64/15.40/13.47 10.93/13.43/11.95 10.18/12.68/11.42 9.74/12.02/10.83 9.39/11.53/10.42

30.16 24.02 15.86 13.84 12.10 11.42 10.86 10.45

Table D.21: BLOOM full results of Table 12.

Method 560m 1.1b 1.7b 3b 7.1b 176b

W4asym full row and A8sym 128
RTN 25.32/46.98/27.12 23.87/68.29/25.97 16.99/31.15/19.51 14.69/25.22/17.30 12.07/20.86/14.84 8.34/14.05/11.24

33.14 39.38 22.55 19.07 15.92 11.21
GPTQ 24.00/44.47/25.66 24.14/66.95/26.17 16.38/29.64/18.79 14.10/24.19/16.67 11.77/20.22/14.48 8.20/13.82/11.07

31.37 39.09 21.61 18.32 15.49 11.03
ZQ-Local 8.30/14.01/11.20

11.17
ZQ-Global 23.92/44.23/25.69 22.53/57.71/23.51 16.25/29.72/18.74 14.12/24.26/16.74 11.78/20.30/14.53 8.24/13.82/11.10

31.28 34.58 21.57 18.38 15.53 11.05

W4asym 128 and A8sym 128
RTN 23.84/44.94/25.79 18.65/51.54/21.21 16.18/30.03/18.70 14.04/24.32/16.77 23.05/48.33/23.69 8.87/15.68/11.72

31.53 30.46 21.64 18.38 31.69 12.09
GPTQ 23.22/43.24/25.01 18.25/48.89/20.74 16.00/29.44/18.41 13.77/23.68/16.35 11.54/19.76/14.27 8.13/13.69/11.01

30.49 29.29 21.29 17.93 15.19 10.95
ZQ-Local 8.20/13.87/11.08

11.05
ZQ-Global 23.12/43.22/25.03 18.19/48.96/20.72 15.75/28.81/18.30 13.73/23.65/16.39 11.57/19.85/14.32 8.17/13.76/11.03

30.45 29.29 20.95 17.92 15.25 10.99

W4asym full row and A8asym 128
RTN 25.30/46.87/27.10 23.90/68.31/25.98 16.96/31.09/19.48 14.68/25.19/17.28 12.07/20.86/14.84 8.34/14.06/11.24

33.09 39.39 22.51 19.05 15.92 11.21
GPTQ 23.97/44.15/25.62 24.61/68.19/26.53 16.36/29.77/18.81 14.10/24.17/16.66 11.78/20.32/14.49 8.20/13.82/11.07

31.24 39.78 21.65 18.31 15.53 11.03
ZQ-Local 8.32/13.97/11.20

11.16
ZQ-Global 23.88/44.40/25.68 22.63/57.91/23.39 16.25/29.77/18.74 14.17/24.24/16.74 11.77/20.28/14.52 8.25/13.82/11.10

31.32 34.64 21.59 18.38 15.52 11.06

W4asym 128 and A8asym 128
RTN 23.83/44.89/25.77 18.63/51.46/21.19 16.16/29.95/18.68 14.03/24.27/16.75 23.51/49.07/23.96 8.85/15.65/11.72

31.50 30.43 21.60 18.35 32.18 12.08
GPTQ 23.26/43.24/25.00 18.18/48.84/20.73 16.05/29.34/18.42 13.69/23.56/16.34 11.54/19.75/14.28 8.14/13.71/11.02

30.50 29.25 21.27 17.86 15.19 10.96
ZQ-Local 8.19/13.90/11.07

11.06
ZQ-Global 23.12/43.14/25.01 18.18/48.99/20.73 15.71/28.73/18.30 13.74/23.68/16.39 11.56/19.85/14.31 8.17/13.78/11.04

30.42 29.30 20.91 17.94 15.24 11.00
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Table D.22: Full results of Table 13.

Block SIze 1024 512 256 128 64 32

PPL 8.16/13.75/11.04 8.15/13.75/11.02 8.15/13.70/11.01 8.13/13.69/11.01 8.14/13.69/11.01 8.14/13.69/11.01
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