A Comprehensive Study on Post-Training Quantization for Large Language Models

Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn, Yuxiong He Microsoft
\{zheweiyao, chengli1, xiaoxiawu, stephen.youn, yuxhe\}@microsoft.com

Abstract

Post-training quantization (PTQ) had been recently shown as a compromising method to reduce memory consumption and/or compute cost for large language models. However, a comprehensive study about the effect of different quantization schemes, different model families, different PTQ methods, different quantization bit precision, etc, is still missing. In this work, we provide an extensive study of those components over tens of thousands of zero-shot experiments. Our results show that (1) Fine-grained quantization and PTQ methods (instead of naive round-to-nearest quantization) are necessary to achieve good accuracy and (2) Higher bits (e.g., 5 bits) with coarse-grained quantization is more powerful than lower bits (e.g., 4 bits) with very fine-grained quantization (whose effective bit precision is similar to 5 bits). We also present recommendations about how to utilize quantization for LLMs with different sizes, and leave suggestions of future opportunities and system work that are not resolved in this work.

1 Introduction

Large language models (LLMs) have been shown breakthrough performance on various benchmarks, e.g., natural language understanding and generation, and have been adopted for daily usage, e.g., Codex [15] and ChatGPT [21]. However, how to efficiently serve those LLMs becomes urgent due to their large memory consumption and heavy computation requirement.

Different than classification models or diffusion models, LLMs have their own serving challenge. Generally, classification models run inference once per query and diffusion models have the same inference behavior for every time step. However, LLMs have two phases, i.e., prompt and generation: the prompt stage takes the query/question (a sequence of tokens) from the user and runs one forward pass, then the generation stage auto-regressively (token-by-token) generates the corresponding answer by running the model for multiple steps. The fundamental bottlenecks for prompt and generation phases are different. Particularly, for a normal prompt stage (e.g., sequence length ≥ 256), the forward pass is primarily compute bounded, i.e., higher compute brings better latency; for the normal generation phase (low batch size) with KV (key and value for attention) cache, the forward pass is mainly memory bounded, i.e., higher memory bandwidth brings better performance. See [22] for a more detailed analysis.

Meanwhile, as mentioned in [14, Figure 3], the bandwidth of hardware increases about 1.4 x every two years while the compute increases about 3.1x every two years. Additionally, multiple nodes are now required to serve extra large models, e.g., 2 A100-80G nodes for MT-NLG-530B [26] and 2 A100-40G nodes for GPT-3-175B [4], which introduces the extra bandwidth challenge between cross-node communication. As such, reducing the model size for LLMs is an urgent request. Meanwhile, if we can also reduce the compute cost, it will cover both prompt and generation phases to further alleviate the serving challenge for LLMs.

Considering the forbidden training/finetuning cost for those LLMs, one of the most effective ways to alleviate those memory/compute challenges is post-training quantization (PTQ), where no/minimal training is required to reduce the bit precision for weights and/or activations to INT4 or INT8. Several works, e.g., $[30,12,29,7]$ have shown the effectiveness of PTQ, but none of them gives a systematic study, e.g., the functional coverage for different PTQ methods, the sensitivity of different models, etc.

Figure 1: The model size and quality trade-off of different quantization methods on models from OPT and BLOOM families. Here PTQ (with fine-grained quantization) represents the method from [30, 12], RTN means the naive round-to-nearest baseline (with fine-grained quantization as well), and FP16/INT8 is used as the no-accuracy-loss baseline. Note that we drop all diverged points for better visualization. For all detailed numbers, please see Appendix D.

In this work, we provide a comprehensive study on the quantization effect for both weigh-only quantization and weight-and-activation quantization using different quantization schemes, e.g., symmetric and asymmetric quantization, with various PTQ methods, including round-to-nearest (RTN), GPTQ [12], ZeroQuant [30] and its variants, on two different model families OPT [34] and BLOOM [24] across model sizes from 125M to 176B. In summary, our observations are as follows.

Sensitivity Analysis(Table 2 and 3)

- We demonstrate that INT8 weight-only quantization does not have any model quality effect. For INT4 weight-only quantization, larger models usually exhibit better quantization tolerance as compared to relative smaller models.
- Activation quantization is generally more sensitive to quantization as compared to weight quantization. Smaller models usually have better activation quantization performance than the relative larger model.
- Different model families show entirely different INT8 activation quantization behaviors. Particularly for large models, BLOOM-176B still has meaningful accuracy (about 1 perplexity, PPL in short, point drop) but OPT-30B and -66B have much worse performance.

Existing PTQ Method Analysis(Table 4, 5, 6, and 7)

- Existing methods can significantly reduce the quantization error as compared to the round-to-thenearest baseline. Different PTQ methods have their own best working scenarios.
- The current existing method can barely achieve less than 0.1 PPL points degradation for either INT4 weight-only or W4A8 weight-and-activation (i.e., INT4 weight and INT8 activation) quantization.

Fine-grained Quantization Effect(Table 8, 9, 11, 12, 10, and 13)

- With further help from fine-grained quantization, PTQ is able to achieve $<0.1 \mathrm{PPL}$ points degradation for large models $(>13 B)$ with either weight-only quantization or weight-and-activation quantization.
- Larger models can use relative coarse-grained weight quantization (e.g., block size 128/256 for BLOOM-176B) to achieve good quantization error as compared to smaller models (e.g., block size 32/64 for OPT-30B).
- For BLOOM-176B, coarse-grained (per-row) weight quantization with higher bits (e.g., 5 bits) always leads to better accuracy as compared to fine-grained quantization with lower bits (e.g., 4 bits with 32 elements as the quantization block size), even if the real bit precision is similar.

We provide model size and model quality trade-offs of models from OPT and BLOOM families in Figure 1. As can be seen, using PTQ optimization methods from [30, 12] and fine-grained quantization, we set up a new quantization Pareto frontier for LLMs. Meanwhile, we recommend the following setting for quantizing LLMs (note that activation quantization should be only applied if necessary): (1) For larger models (>10B), fine-grained (block size 64-256) 4-bit weight quantization plus 8 -bit activation quantization (block size 64-256) with PTQ methods can be used for real deployment; (2) For middle-size models ($<10 \mathrm{~B}$ and $>1 \mathrm{~B}$), per-row INT8 quantization plus fine-grained (block size 64-256) INT8 activation quantization can be used with PTQ methods from [12, 30]; (3) For smaller models $(<1 \mathrm{~B})$, directly apply per-row W8A8 (INT8 weight and INT8 activation) RTN is enough based on [30].

2 Related Work

Different quantization methods [25, 32, 9, 35, 1, 8, 27, 17] for transformer-based models [28] have been explored for a while. However, most of those works need quantization-aware finetuning or even expensive quantization-aware knowledge distillation [16]. Due to the cost of training/finetuning LLMs, it is a challenge for practitioners/researchers to do finetuning/distillation on those LLMs, particularly for models with hundreds of billions of parameters, like GPT-3-175B [4] and BLOOM-176B [24].

Post-training quantization (PTQ) [31, 3] is an alternative way to quantize the model with no/minimal finetuning requirement. Along this line, several recent works focus on LLMs (beyond the million-parameter scale). [30] proposes vector-based INT8 quantization with layer-by-layer knowledge distillation to overcome the training cost and quantization error introduced by LLMs. [6] uses similar vector-based INT8 quantization weight plus mixed-precision (INT8/FP16) quantization for activation to overcome the sensitivity of activation quantization. However, the inference speed of [6] is generally even slower than FP16 baseline [2] due to the difficulty of implementing mixed-precision calculation within a single tensor. More recently, [12] extends OBQ [10] on LLMs for INT4 weight-only quantization and shows great efficiency on quantization and latency, and [29] shows the outliers from activations can be smoothed out by migrating the quantization difficulty from activations to its associated weights. However, [29] can only work for W8A8 quantization as lower weight precision (INT4) itself already leads to significant accuracy degradation, and the accuracy drop is larger than 0.1 PPL points, which as discussed in the later section is sub-optimal. [7] shows the scaling law of weight-only quantization with the simplest round-to-nearest baseline, but it does not consider the weight-and-activation quantization and/or the above PTQ optimization methods. As can be seen from Figure 1, by using PTQ optimization methods, the model quality can be significantly improved. Please also see Appendix D for more detailed numbers.

Different than existing works, our paper extensively tests the effect of (1) different quantization schemes, e.g., symmetric and asymmetric quantization, (2) different PTQ methods, e.g., [30, 12], (3) different model families, e.g., $[24,34]$, (4) different quantization coverage, e.g., weight-only and weight-and-activation quantization, and (5) other discussions, e.g., the effect of quantization granularity. As such, we provide a much more comprehensive understanding of post-training quantization for large language models compared to the previous works.

Table 1: Quantization sensitivity (or quantization accuracy loss) categorization. From Class-1 to Class-3, the sensitivity (or loss) becomes larger.

Class	Class - 1	Class-2	Class-3
PPL Degradation	≤ 0.1	$>0.1 \& \leq 0.5$	>0.5

3 Background and Challenges

3.1 Background of Quantization

Quantization maps floating point (e.g., FP16/FP32) numbers to integer numbers (e.g., INT4/INT8) so that lower memory usage (weight quantization) and faster integer arithmetic (weight-and-activation quantization) can be achieved compared to the floating point format. In this work, we are focusing on uniform quantization, i.e.,

$$
\begin{equation*}
Q(x)=\operatorname{INT}((x-Z) / S)-Z \tag{1}
\end{equation*}
$$

where Q is the quantization function, x is a floating point input vector/tensor, S is a real valued scaling factor, and Z is an integer zero point. Based on different settings, the quantization method can be viewed as (1) symmetric vs. asymmetric quantization ($Z=0$ or not), (2) fine-grained vs. coarse-grained quantization (how to partition the input x and get its associated scaling factor, e.g., matrix wise or row wise). See [13] for more details.

Throughout this work, we focus on post-training quantization (PTQ), i.e., no or minimal training effort is applied after quantization, for which large accuracy degradation usually exhibits for coarse-grained quantization (per matrix/tensor) due to their large quantization error. As such, we focus on fine-grained quantization. Particularly, we use the per-row quantization (one row of the weight matrix or one token for the activation) from [30] as our coarsest-grained quantization method, and we use block-k quantization (for every k elements, they have their own scaling factor and/or zero point) as our finer-grained quantization scheme.

3.2 Post Training Quantization for Large Language Models

There are mainly two categories of PTQ for LLMs, i.e., weight-only quantization [12] and weight-and-activation quantization [6, 30, 29]. For the latter case, all works found that activation quantization is more sensitive than weight quantization. However, none of them gives a systematic view, e.g., the sensitivity of weight/activation quantization for different model sizes and different model families. Therefore, we here perform a study on both the OPT [34] and BLOOM [24] families to illustrate the quantization sensitivity of weight and activation.

3.2.1 Settings

Quantization setting. We use both symmetric and asymmetric quantization to measure the quantization sensitivity and show the benefit of asymmetric quantization. Particularly, we use per-row quantization [12] for weight quantization and use per-token quantization for activation [30].

Sensitivity setting. We use the zero-shot validation perplexity (PPL) difference on three datasets, i.e., Wikitext-2 [20], PTB [19], and C4 [23], before and after quantization of those LLMs to demonstrate their sensitivity as the PPL is highly related to zero-shot/few-shot accuracy measurement [7]. Particularly, a larger PPL drop means higher quantization sensitivity. For simplicity, we also categorize quantization sensitivity (or quantization accuracy loss) into 3 different classes as shown in Table 1. ${ }^{1}$ The sensitivity (or loss) gradually increases as the class number becomes larger. From a practical perspective, we prefer lower quantization sensitivity (accuracy loss) and Class-1 can be (almost) viewed as the optimal-loss post-training quantization.

[^0]Table 2: Average PPL of OPT. See Table D. 1 for all results.

Precision	125 m	350 m	1.3 b	2.7 b	6.7 b	13 b	30 b	66 b
W16-A16	28.27	22.93	15.44	13.58	11.90	11.22	10.70	10.33
W8 $^{\text {sym }}$-A16	28.27	22.96	15.44	13.59	11.90	11.22	10.70	10.33
W8 $^{\text {asym }}$-A16	28.31	22.96	15.46	13.60	11.90	11.22	10.70	10.33
W4 $^{\text {sym }}$-A16	45.42	27.00	20.79	25.06	14.36	12.73	11.77	97.05
W4 ${ }^{\text {asym }}$-A16	37.46	26.76	19.75	19.58	13.44	12.09	11.52	31.52
W16-A8 $8^{\text {sym }}$	28.40	23.14	16.40	14.29	26.04	3171.49	2048.21	2638.09
W16-A8 ${ }^{\text {asym }}$	28.37	23.02	16.06	13.76	12.62	15.36	23.57	561.35

Table 3: Average PPL of BLOOM. See Table D. 2 for all results.

Precision	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
W16-A16	29.35	28.32	20.43	17.58	14.96	10.90
W8 $^{\text {sym }}$-A16	29.37	28.33	20.43	17.59	14.97	10.90
W8 $^{\text {asym-A16 }}$	29.36	28.33	20.45	17.59	14.97	10.90
W4 $^{\text {sym }}$-A16	34.73	33.24	23.18	19.36	16.27	11.28
W4 ${ }^{\text {asym-A16 }}$	33.06	39.40	22.47	19.01	15.90	11.20
W16-A8	sym	29.52	28.48	20.68	17.73	15.28
W16-A8	12.10					
asym	29.41	28.36	20.52	17.65	15.14	11.62

3.2.2 Robustness of Weight-only Quantization for Large Models

The results of weight-only quantization of OPT and BLOOM are shown in Table 2 and 3. INT8 (either symmetric or asymmetric) weight-only quantization leads to almost no accuracy loss (smaller than 0.05, i.e., Class-1). As such, for generation-oriented tasks, we can simply replace FP16 weight with INT8 weight to save memory consumption. For INT4 quantization, the asymmetric method has better accuracy than the symmetric method since asymmetric quantization has better utilization of the quantization range. Also, larger models have better tolerance to low-precision quantization (i.e. INT4) than smaller models, except for several models, e.g., OPT-66B. ${ }^{2}$ Particularly, for BLOOM-176B, the PPL degradation (about 0.3 points) is in Class-2, and this may explain why the large GLM-130B [33] can work with INT4 weight-only quantization out of the box with acceptable accuracy impact.

3.2.3 Challenge of Activation Quantization for Large Models

Activation quantization has generally been shown to be more challenging than weight quantization [30, 6]. As such, throughout the paper, we only focus on INT8 activation quantization.

[^1]Similar to weight-only quantization, asymmetric quantization here has better performance than symmetric quantization, e.g., OPT-6.7B has a totally different behavior with asymmetric and symmetric quantization. Different than weight-only quantization, smaller models usually have better activation quantization tolerance as their hidden dimension is smaller and the activation dynamic range is also narrower than larger models [30]. Note that for models with model size larger than 10B, all of them belong to Class-3, which has more than 0.5 PPL points degradation.

Also, note that different model families have significantly different behaviors. BLOOM does not have divergence issues up to 176 B model size but OPT has very poor performance from 6.7 B model size (the larger models with INT8 activation have even worse PPL). This may be caused again by the layer norm issue of OPT-family ${ }^{2}$.

3.2.4 Summary

In a short summary,

- INT8 weight-only quantization can be used as a standard (almost) no-accuracy-degradation way to help reduce memory cost for LLMs.
- INT4 weight-only quantization for small models leads to significant accuracy degradation (Class-3) and this effect diminishes as the model size becomes larger (Class-2). However, even for the larger models, the accuracy degradation might be higher than the gain from using the larger model, e.g., 4-bit asymmetric quantized OPT-30B has worse performance than 8-bit quantized OPT-13B in Table 2.
- INT8 activation leads to minimal accuracy degradation for small models (Class-1) and the trend becomes larger for larger models (Class-3). Another interesting thing is that the activation quantization sensitivity is highly related to the model family, e.g., the result of BLOOM in Table 3 is much better than that of OPT in Table 2.

4 Evaluation of Existing Methods for PTQ

Several lightweight optimization-based (weight of the model will be updated during quantization) methods have been proposed. Different than quantization-aware training, those methods [30, 12, 29] only require a small portion of the training data and a short range of training time. Among them, two types of methods are demonstrated to be both effective and efficient (based on GPU resource, time cost, and data) for INT4 weight quantization, GPTQ [12] and ZeroQuant [30]. For this work, we focus on the variants of GPTQ and ZeroQuant as well as the most straightforward baseline, round-to-nearest neighborhood (RTN).

RTN directly applies PTQ on the trained data and follows Section 3.1 to do the quantization. Particularly, for symmetric quantization, we set $S=\max (a b s(x))$ and $Z=0$; for asymmetric quantization, we set $S=\max (x)-\min (x)$ and set $Z=\min (x)$.

GPTQ extends the OBQ [10] by column-/row-wisely quantizing weight matrix instead of element-by-element. In short, it directly optimizes the following non-linear least square problem,

$$
\begin{equation*}
\min _{\hat{W}}\|W x-\hat{W} x\|_{2}^{2} \tag{2}
\end{equation*}
$$

where W is the weight, x is the activation, and \hat{W} is a quantized weight. There are multiple ways to solve this problem, e.g., using second-order methods to get a closed-form solution as GPTQ does or using ZQ-Local which is discussed below. See [12] for more details.

Table 4: The evaluation results of different PTQ methods on OPT with W4 $4^{\text {asym }}$-A16. See Table D. 3 for the full table.

Precision	125 m	350 m	1.3 b	2.7 b	6.7 b	13 b	30 b	66 b
W16-A16	28.27	22.93	15.44	13.58	11.90	11.22	10.70	10.33
RTN	37.46	26.76	19.75	19.58	13.44	12.09	11.52	31.52
GPTQ	33.52	25.02	16.42	14.19	12.28	11.42	10.78	10.52
ZQ-Local *	33.50	25.48	16.74	14.45	12.46	11.64	11.05	10.79
ZQ-Global *	31.77	24.45	16.48	14.30	12.38	11.62	11.04	10.68

ZQ-Global is the original method proposed in [30], where authors treat each transformer layer as a small neural network (a.k.a., subnetwork) and use the unquantized FP16 subnetwork as the teacher model to distill the quantized one with a few hundred iterations, i.e.,

$$
\begin{equation*}
\min _{\hat{\theta}}\left\|f_{\theta}(x)-f_{\theta}(x)\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

where θ is a set of weight, $\hat{\theta}$ is the quantized version of it, f_{θ} is the subnetwork with parameters θ, and x is the input. As such, it can significantly reduce the GPU resource requirement and time cost. See [30] for more details.

ZQ-Local is an extension mode of ZQ-Global for further GPU requirement reduction and training cost reduction. Particularly, instead of using each transformer layer as the subnetwork, we treat each linear layer as the subnetwork. This method can be viewed as an iterative first-order optimization method (e.g., SGD) to solve Eq. 2.

4.1 Settings

We compare four different methods on weight-only and weight-and-activation quantization. As weight quantization is always static (i.e., it does not change during inference), there is almost no system performance difference between symmetric and asymmetric quantization, ${ }^{3}$ we directly use asymmetric quantization for weight for better accuracy. For activation quantization, since we use dynamic quantization as [30] (i.e. the bias term dynamically changes and cannot be simply fused into other operators), symmetric quantization would potentially provide better system performance but worse accuracy than asymmetric quantization. As such, in this section, we provide both results to demonstrate the trade-off. We use the quantization error/sensitivity as Section 3 to demonstrate the effectiveness of these methods.

For parameter used for GPTQ, ZQ-Local, and ZQ-Global, please see Appendix A. One interesting thing we find for ZeroQuant is that the hyperparameters (e.g., learning rate and learning-rate scheduler) provided in the original work [30] are sub-optimal. In this work, for ZQ-Local and ZQ-Global, we use the best configuration we find to report the result. For simplicity, we mark ZQ-Local and ZQ-Global as ZQ-Local* and ZQ-Global*, respectively, with tuned results.

4.2 Evaluation of Weight-only Quantization

The weight-only quantization results of OPT and BLOOM are shown in Table 4 and 5 , respectively.
Similar to RTN (which has been shown in Section 3), GPTQ, ZQ-Local*, and ZQ-Global* have the same observation, i.e., larger models are less sensitive to INT4 weight-only quantization except for OPT-66B,

[^2]Table 5: The evaluation results of different PTQ methods on BLOOM with W4 ${ }^{\text {asym }}$-A16. See Table D. 6 for the full table.

Precision	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
W16-A16	29.35	28.32	20.43	17.58	14.96	10.90
RTN	33.06	39.40	22.47	19.01	15.90	11.20
GPTQ	31.08	39.67	21.58	18.33	15.50	11.02
ZQ-Local *	31.74	31.06	21.70	18.50	15.55	11.11
ZQ-Global *	31.21	30.85	21.38	18.33	15.52	11.05

which has larger degradation than OPT-30B. Overall, optimization-based methods have significantly better accuracy performance than the baseline method, RTN. For instance, optimization-based methods significantly reduce PPL point degradation of OPT-30B/66B compared to RTN. Meanwhile, most quantized large models ($>6.7 \mathrm{~B}$) belong to Class-2, which has the potential to be deployed for real application (e.g., INT4 OPT-30B (66B) has better quality than INT8 OPT-13B (30B)).

Among the three optimization-based methods, ZQ-Global* usually shows better performance than the other two on smaller models (smaller than 1B parameters), and GPTQ demonstrates better performance on larger models. ZQ-Local* does not give better results than GPTQ and ZQ-Global*, which is understandable since GPTQ utilizes a "closed" form to solve the non-linear quadratic problem and ZQ-Global* optimizes a larger subnetwork.

However, the worse performance of ZQ-Global* than GPTQ for larger models is not initially expected as ZQ-Global* optimizes an entire transformer layer while GPTQ only optimizes a single linear layer. One possible reason is that large models are more sensitive to the weight update and a more advanced finetuning method is needed. ${ }^{4}$

4.3 Evaluation of weight and activation quantization

The evaluation results of existing methods with W4A8 quantization are presented in Table 6 and 7. Optimization-based methods achieve significantly better accuracy than RTN for both asymmetric and symmetric activation quantization schemes, demonstrating their effectiveness. However, all of the results are in Class-2 or Class-3, i.e., it might be better to use smaller models with fewer parameters than larger models with quantization.

Among quantization-based methods, ZQ-Global* and ZQ-Local* work generally better than GPTQ, which is expected since GPTQ was originally proposed for weight-only quantization. Compared to ZQ-Local*, ZQ-Global* has better performance for most cases except for the two largest models, i.e., OPT-66B and BLOOM-176B, even though ZQ-Global* has larger trainable parameters in one step, which again reflects that for LLMs, a more suitable and advanced optimization method is needed.

4.4 Summary of Existing Methods

In a short summary,

- GPTQ generally works better for weight-only quantization, and ZeroQuant (including both ZQ-Global and ZQ-Local) has better performance for weight \& activation quantization. We also summarize the

[^3]Table 6: OPT ppl on wikitext/opt/c4 with $\mathrm{W} 4^{\text {asym }}-\mathrm{A} 8^{\text {sym }} / \mathrm{A} 8^{\text {asym }}$. Please see Table D. 9 for the full table.

Precision	125 m	350 m	1.3 b	2.7 b	6.7 b	13 b	30 b	66 b
W16-A16	28.27	22.93	15.44	13.58	11.90	11.22	10.70	10.33
W8 $^{\text {asym-A16 }}$	28.31	22.96	15.46	13.60	11.90	11.22	10.70	10.33
W4 $^{\text {asym }}$-A8								
RTN	Block							
GPTQ	37.21	27.84	24.73	31.86	146.10	3953.99	3238.68	2990.32
ZQ-Local *	32.72	25.80	17.55	15.46	51.78	3409.66	1889.45	4822.68
ZQ-Global *	33.10	26.29	18.04	16.40	18.67	2536.44	1612.07	504.19
W4 $^{\text {asym }}$-A8								

best optimization-based method for different models and different settings in Table B. 1 and B.2.

- The tested optimization-based methods cannot achieve Class-1 quantization error for either INT4 weight-only or W4A8 weight-and-activation quantization except for GPTQ on OPT-30B with weight-only quantization.

5 Fine-grained Quantization and Its Evaluation with PTQ

With PTQ and row-wise quantization, we can hardly achieve Class-1 quantization error for either weight-only or weight-and-activation quantization. As such, it is generally better to use a smaller model with INT8 weight quantization than a $2 x$ larger model with INT4 weight quantization.

One way to solve this problem is to use finer-grained quantization schemes [5], i.e., every k elements have their own scaling factor and/or zero point. This can significantly reduce the quantization error. For the extreme case, i.e., every 1 element has its own scaling factor, we can exactly recover the original FP16 number. More importantly, such block-k quantization can be implemented on modern GPU (one of the most popular deep learning architectures) since the compute unit (streaming multiprocessor) of GPU process tiles of data (e.g., 128 by 128 tiling size) for matrix computation.

5.1 Settings

Although fine-grained quantization can greatly close the gap between the quantized tensor and its floating point counterpart, later we show that it still leaves a non-trivial accuracy gap if RTN is applied. Therefore, built upon fine-grained quantization, we also apply the existing optimization-based methods to further boost the accuracy. Particularly, we use GPTQ and ZQ-Global for all models and settings, and use ZQ-Local for OPT-66B and BLOOM-176B. For hyper-parameters used for ZQ-Global and ZQ-Local, we choose the top three found in Section 4 for all models except for BLOOM-176B, for which we only use the top-one hyperparameter, to reduce the training cost.

5.2 Evaluation of Weight-only Quantization

4-bit Quantization. We report the W4A16 results of OPT and BLOOM in Table 8 and 9 with various quantization block sizes, respectively. Smaller block sizes improve the performance by a non-trivial margin as compared to per-row quantization.

Table 7: BLOOM ppl on wikitext/opt/c4 with $\mathrm{W} 4^{\text {asym }}$ - $\mathrm{A} 8^{\text {sym }} / \mathrm{A} 8^{\text {asym }}$. Please see Table D. 12 for the full table.

Precision	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
W16-A16	29.35	28.32	20.43	17.58	14.96	10.90
W8 $^{\text {asym-A16 }}$	29.36	28.33	20.45	17.59	14.97	10.90
W4 $^{\text {asym_A }}$-A ${ }^{\text {sym }}$ Block						
RTN	33.47	40.83	23.07	19.31	16.36	12.91
GPTQ	31.59	40.47	22.10	18.48	15.95	12.54
ZQ-Local *	32.13	31.30	22.01	18.69	15.86	11.41
ZQ-Global *	31.31	31.18	21.51	18.41	15.67	11.60
W4 $^{\text {asym_A8 }}$ asym	Block					
RTN	33.18	39.73	22.75	19.17	16.19	12.22
GPTQ $_{\text {ZQ-Local }}$ *	31.35	39.50	21.71	18.44	15.75	11.86
ZQ-Global *	31.86	31.22	21.86	18.66	15.75	11.19

For different model sizes, the diminishing return points are different. For instance, small models (e.g., OPT-125m and BLOOM-560m) can achieve great gain until the block size becomes 32 . However, for large models ($>10 \mathrm{~B}$, except OPT-66B), the gain from smaller block sizes quickly vanishes around block- $256 / 512$. More importantly, for those $\geq 13 \mathrm{~B}$ models, small quantization block size makes the quantization error belong to Class-1, which means the accuracy degradation is almost negligible.

We also report full 3-bit quantization results in Appendix C.
Fine-grained VS. Higher Bits Would higher (more) bits with coarse-grained quantization be better than lower bits with finer-grained quantization? To answer this, we select the most robust model in our study, i.e., BLOOM-176B, to perform 3 to 8 bits asymmetric weight-only quantization. We use 32 as the smallest block size, since with such a small block size, the real effective bit precision is $\mathrm{N}+1$ bits (for every 32 numbers, we need 2 FP16 numbers, scaling and bias values).

The results are presented in Table 10. As can be seen, finer-grained quantization cannot have better performance than higher bits quantization with relatively coarser granularity for all cases. Another interesting noticeable point is that 6 -bit quantization can achieve no-loss quantization. However, how to achieve good system performance when using non-standard bit precision (e.g., 6 bits) is a big challenge (we give potential solutions in Section 6).

5.2.1 Summary

By testing the optimization-based PTQ method with a fine-grained quantization scheme, here is a short summary:

- Larger models $(\geq 10 B)$ can achieve Class-1 quantization error for 4-bit quantization. They can benefit from low-precision quantization as the model size with INT4 is similar to an INT8 2 x smaller model and the accuracy is better.
- Smaller models $(\leq 10 B)$ usually can only achieve Class-2 or Class-3 quantization error. As such, the usage of 4 -bit quantization needs to be carefully evaluated for those models.

Table 8: Results of W4 $4^{\text {asym }}$-A16 quantization on OPT with various block-size out of the best result from optimization-based methods. See Table D. 15 for full results including RTN. N/A means that the block size is not divisible by the hidden size.

Block-size	125 m	350 m	1.3 b	2.7 b	6.7 b	13 b	30 b	66 b
W16-A16	28.27	22.93	15.44	13.58	11.90	11.22	10.70	10.33
Per-row	31.77	24.45	16.42	14.19	12.28	11.42	10.78	10.52
1024	$\mathrm{~N} / \mathrm{A}$	24.39	16.17	$\mathrm{~N} / \mathrm{A}$	12.16	11.36	10.75	10.52
512	$\mathrm{~N} / \mathrm{A}$	24.34	15.97	13.93	12.08	11.32	10.73	10.52
256	30.68	24.17	15.84	13.89	12.05	11.28	10.74	10.50
128	30.04	23.99	15.85	13.83	12.10	11.28	10.74	10.44
64	29.88	23.99	15.76	13.84	12.02	11.27	10.72	10.40
32	29.62	23.86	15.71	13.82	12.03	11.28	10.72	10.41

- Fine-grained quantization cannot match the accuracy of more-bit quantization even if the real model size is similar. However, how to utilize non-standard bit-precision is still challenging.

5.3 Evaluation of Weight and Activation Quantization

W4A8 Quantization We show four different settings of W4A8 quantization of OPT and BLOOM in Table 11 and 12, respectively. We restrict the activation quantization block size to 128 .

Thanks to the small activation quantization block size, there is no accuracy difference between symmetric and asymmetric quantization schemes. For large enough models (e.g., $\geq 10 \mathrm{~B}$), using such fine-grained activation quantization does not introduce much quantization error as compared to weight-only (either per row or per 128 elements) quantization, except for full-row weight quantization on OPT-66B ${ }^{3}$. For smaller models, fine-grained activation quantization plus per-row weight quantization usually has a larger accuracy drop (around 0.1 PPL drop) than per-row weight-only quantization.

Different Quantization Block Sizes We report the effects of different activation quantization block sizes in Table 13 on BLOOM-176B.

As expected, smaller block sizes bring better accuracy compared to larger block sizes. The performance improvement plateaus after the size reaches 256 , which matches the numbers that INT8 can represent. Note that although INT8 can represent 256 different numbers, there is still an activation quantization error since we use uniform quantization.

5.3.1 Summary

With the comprehensive test on OPT and BLOOM model families, here is the summary:

- With fine-grained activation quantization, the quality degradation of symmetric and asymmetric schemes is similar. For larger models $(>10 \mathrm{~B})$, the difference between weight-and-activation quantization and weight-only quantization is negligible.
- The benefit from fine-grained activation quantization vanishes when the block size reaches 256 .

Table 9: Results of W4 ${ }^{\text {asym }}$-A16 quantization on BLOOM with various block-size out of the best result from optimization-based methods. See Table D. 16 for full results including RTN. N/A means that the block size is not divisible by the hidden size.

Block-size	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
W16-A16	29.35	28.32	20.43	17.58	14.96	10.90
Per-row	31.08	30.85	21.38	18.33	15.50	11.02
1024	30.98	$\mathrm{~N} / \mathrm{A}$	31.03	$\mathrm{~N} / \mathrm{A}$	15.24	10.96
512	30.75	29.40	20.93	17.99	15.20	10.95
256	30.49	29.26	20.95	17.97	15.18	10.95
128	30.35	29.13	20.92	17.90	15.17	10.94
64	30.24	29.01	20.82	17.90	15.16	10.94
32	30.18	28.91	20.82	17.88	15.16	10.95

Table 10: Results of BLOOM-176B with different quantization bits See Table D. 19 for full results. N/A means that we did not perform the evaluation.

Bits	3	4	5	6	7	8
Per-row	49.46	11.02	10.93	10.90	10.90	10.90
1024	11.15	10.96	10.91	10.90	10.90	10.90
32	11.12	10.95	10.91	N/A	N / A	N/A

6 Future Opportunity and Conclusion

Future Opportunity Throughout the paper, we see several important but unresolved problems from current quantization schemes and/or algorithms, and we find new potential directions for LLM compression:

- ZQ-Global used in the paper has worse accuracy than GPTQ even though it uses a larger training subnetwork. This is very counter-intuitive since if we increase the subnetwork to the full network, QAT (quantization-aware training) is performed which should have better performance. A further understanding is needed and/or a better algorithm is needed.
- Although we use fine-grained quantization schemes in the paper, the real implementation is missing.
- How to efficiently implement odd bit precision is also challenging. [12] demonstrated that 3-bit can achieve better throughput in the generation phase by packing all 3 -bit numbers in continuous memory space. However, this method is sub-optimal as the dequantization step needs to connect bits from different bytes. One possible way to implement odd bits, e.g., 5 bits, is to use two integer matrices with INT4 and INT1. During the dequantization stage, we couple the two matrices together.
- How to combine PTQ with other lightweight compression techniques, e.g., post-training pruning [18, 11], is an interesting direction to further reduce the memory consumption and compute cost.

Table 11: OPT W4 ${ }^{\text {asym }}$-A8 with various block-size out of the best result from GPTQ, ZQ-Local, and ZQ-Global. See Table D. 20 for full results including RTN.

Quantization Scheme	125m	350 m	1.3 b	2.7 b	6.7 b	13b	30b	66b
W16-A16	28.27	22.93	15.44	13.58	11.90	11.22	10.70	10.33
W4 $4^{\text {asym }}$ Per-row and A16	31.77	24.45	16.42	14.19	12.28	11.42	10.78	10.52
W4 $4^{\text {asym }} 128$ and A16	30.04	23.99	15.85	13.83	12.10	11.28	10.74	10.44
$\mathrm{W} 4{ }^{\text {asym }}$ full row and $\mathrm{A} 8{ }^{\text {sym }} 128$	31.85	24.56	16.48	14.22	12.31	11.42	10.76	10.63
W4 ${ }^{\text {asym }} 128$ and $\mathrm{A} 8^{\text {sym }} 128$	30.06	24.07	15.84	13.86	12.05	11.31	10.73	10.43
W $4{ }^{\text {asym }}$ full row and $\mathrm{A} 8^{\text {asym }} 128$	32.10	24.58	16.40	14.20	12.29	11.45	10.80	10.61
W4 $4^{\text {asym }} 128$ and $\mathrm{A} 8^{\text {asym }} 128$	30.16	24.02	15.86	13.84	12.04	11.31	10.75	10.45

Table 12: BLOOM W4 ${ }^{\text {asym }}$-A8 with various block-size out of the best result from GPTQ, ZQ-Local, and ZQ-Global. See Table D. 21 for full results including RTN.

Quantization Scheme	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
W16-A16	29.35	28.32	20.43	17.58	14.96	10.90
W4 asym P Per-row and A16	31.08	30.85	21.38	18.33	15.50	11.02
W4 asym 128 and A16	30.35	29.13	20.92	17.90	15.17	10.94
W4 $^{\text {asym }}$ full row and A8 ${ }^{\text {sym }} 128$	31.28	34.58	21.57	18.32	15.49	11.03
W4 $^{\text {asym }} 128$ and A8 ${ }^{\text {sym }} 128$	30.45	29.29	20.95	17.92	15.19	10.95
W4 $^{\text {asym }}$ full row and A8 ${ }^{\text {asym }} 128$	31.24	34.64	21.59	18.31	15.52	11.03
W4 $^{\text {asym }} 128$ and A8 ${ }^{\text {asym }} 128$	30.42	29.25	21.27	17.86	15.19	10.96

Conclusion In this work, we provide a comprehensive study (tens of thousands of zero-shot evaluations) of post-training quantization (PTQ) on large language models with different quantization schemes (symmetric vs. asymmetric), different PTQ methods (e.g., RTN, GPTQ, ZeroQuant), and different quantization coverage (weight-only and weight-and-activation quantization), etc. We find that PTQ methods are critical to improving the quantized model quality. Our results show that although fine-grained quantization can bring acceptable accuracy and model size trade-off, the best way to maintain model quality is to use higher bits. We also list several potential future directions and hope our work sheds some light on LLMs compression.

References

[1] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin King. Binarybert: Pushing the limit of bert quantization. arXiv preprint arXiv:2012.15701, 2020.
[2] Big-Science. Bloom inference. https://github.com/huggingface/transformers-bloom-inference/ tree/main/bloom-inference-scripts, 2022.
[3] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the challenges of efficient transformer quantization. arXiv preprint arXiv:2109.12948, 2021.

Table 13: Results of BLOOM-176B with different quantization block sizes on activation. Here weight is always asymmetrically quantized with block size 128. See Table D. 22 for full results.

Block Size	1024	512	256	128	64	32
PPL	10.98	10.97	10.95	10.95	10.95	10.95

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.
[5] Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of narrow precision inferencing at cloud scale with microsoft floating point. Advances in neural information processing systems, 33:10271-10281, 2020.
[6] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.
[7] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. arXiv preprint arXiv:2212.09720, 2022.
[8] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.
[9] Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Remi Gribonval, Herve Jegou, and Armand Joulin. Training with quantization noise for extreme fixed-point compression. arXiv preprint arXiv:2004.07320, 2020.
[10] Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training quantization and pruning. arXiv preprint arXiv:2208.11580, 2022.
[11] Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot. arXiv preprint arXiv:2301.00774, 2023.
[12] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.
[13] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630, 2021.
[14] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W Mahoney, and Kurt Keutzer. Ai and memory wall. RiseLab Medium Post, 2021.
[15] GitHub. Github copilot. https://github.com/features/copilot/, 2021.
[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. Workshop paper in NIPS, 2014.
[17] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert: Integer-only bert quantization. In International conference on machine learning, pages 5506-5518. PMLR, 2021.
[18] Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami. A fast post-training pruning framework for transformers. arXiv preprint arXiv:2204.09656, 2022.
[19] Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn treebank. Using Large Corpora, page 273, 1994.
[20] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In International Conference on Learning Representations, 2017.
[21] OpenAI. Openai chatgpt. https://openai.com/blog/chatgpt/, 2022.
[22] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference. arXiv preprint arXiv:2211.05102, 2022.
[23] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2019.
[24] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.
[25] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Q-BERT: Hessian based ultra low precision quantization of bert. In AAAI, pages 8815-8821, 2020.
[26] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990, 2022.
[27] Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong. Compression of generative pre-trained language models via quantization. arXiv preprint arXiv:2203.10705, 2022.
[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998-6008, 2017.
[29] Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438, 2022.
[30] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. arXiv preprint arXiv:2206.01861, 2022.
[31] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. Gobo: Quantizing attentionbased nlp models for low latency and energy efficient inference. In 202053 rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 811-824. IEEE, 2020.
[32] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: Quantized 8bit bert. arXiv preprint arXiv:1910.06188, 2019.
[33] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint arXiv:2210.02414, 2022.
[34] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.
[35] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu. Ternarybert: Distillation-aware ultra-low bit bert. arXiv preprint arXiv:2009.12812, 2020.

Table B.1: Best optimization method of OPT family in Section 4.

Precision	125 m	350 m	1.3 b	2.7 b	6.7 b	13 b	30 b	66 b
Weight Only (INT4)	ZQ-Global	ZQ-Global	GPTQ	GPTQ	GPTQ	GPTQ	GPTQ	GPTQ
Weight \& Activation (W4A8)	ZQ-Global	ZQ-Global	ZQ-Global	GPTQ	ZQ-Global	ZQ-Global	ZQ-Global	ZQ-Local

Table B.2: Best optimization method of BLOOM family in Section 4.

Precision	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
Weight Only (INT4)	GPTQ	ZQ-Global	ZQ-Global	ZQ-Global/GPTQ	GPTQ	GPTQ
Weight \& Activation (W4A8)	ZQ-Global	ZQ-Global	ZQ-Global	ZQ-Global	ZQ-Global	ZQ-Local

A Detailed Setting Used in Section 4

Same as [12], for all methods, we use C4 dataset to randomly select 128 sentences for training and each of them has 2048 tokens.

For GPTQ, we check its main hyperparameter, i.e., the dampening factor, and find out the method is not sensitive to it. As such, we use the hyparameter suggested by the author for all of our experiments.

For ZQ-Global and ZQ-Local, as mentioned the in main text, the hyperparameters suggested by the original work [30] is suboptimal. We find that a linear decay learning rate schedule is very helpful in our initial test. As such, we add this as our default setting. Meanwhile, we extensively test a wide range (1e-3 to $5 \mathrm{e}-8$) of learning rate for different models until we find the best learning rate (i.e., larger or smaller learning rate leads to worse accuracy performance). We use Adam optimizer and a default batch size 1.

For all three methods, we run them on a single GPU (either V100-32GB or A100-80GB). For the largest model tested in the paper, i.e., BLOOM-176B, the cost of all methods is lower than 1 GPU-day on A100-80G.

B Best PTQ Methods with Per-row Quantization

Table B. 1 and B. 2 summarize the best PTQ methods with per-row optimization.

C 3-bit Weight-only Quantization

We report W3A16 results of OPT and BLOOM in C. 1 and C. 2 with various quantization block sizes, respectively. Similar to 4-bit quantization, smaller block size brings better accuracy. However, none of the models can achieve Class-1 quantization error, and more importantly, 3-bit with block size 32, which has similar actually bits as 4-bit per-row quantization (since block size 32 has one FP16 scaling factor and one FP16 zeropoint), has worse performance than 4-bit per-row quantization, which demonstrates that fine-grained quantization might be able to close the gap from the reduction of bits.

D Full results of Our Evaluation

We put the full results of our evaluations in this section.

Table C.1: Results of W3 ${ }^{\text {asym }}$-A16 quantization on OPT with various block-size out of the best result from optimization-based methods. See Table D. 17 for full results including RTN. N/A means that the block size is not divisible by the hidden size.

Block-size	125 m	350 m	1.3 b	2.7 b	6.7 b	13 b	30 b	66 b
W16-A16	28.27	22.93	15.44	13.58	11.90	11.22	10.70	10.33
Per-row	46.82	30.30	22.36	17.06	14.18	12.43	11.28	17.77
1024	N/A	29.62	20.16	N/A	12.90	11.74	11.03	12.95
512	$\mathrm{~N} / \mathrm{A}$	28.65	18.94	15.47	12.82	11.67	10.97	12.33
256	38.85	27.92	17.95	15.10	12.79	11.63	10.90	11.34
128	36.80	26.97	17.61	15.05	12.69	11.59	10.91	11.27
64	35.48	26.76	17.40	14.85	12.58	11.62	10.92	10.97
32	33.75	26.38	17.11	14.73	12.64	11.70	10.99	10.95

Table C.2: Results of W3 ${ }^{\text {asym }}$-A16 quantization on BLOOM with various block-size out of the best result from optimization-based methods. See Table D. 18 for full results including RTN. N/A means that the block size is not divisible by the hidden size.

Block-size	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
W16-A16	29.35	28.32	20.43	17.58	14.96	10.90
Per-row	43.37	54.48	25.59	24.10	271.31	49.46
1024	38.10	$\mathrm{~N} / \mathrm{A}$	24.24	$\mathrm{~N} / \mathrm{A}$	16.68	11.15
512	35.20	33.75	23.58	19.58	16.21	11.15
256	34.43	32.46	23.08	19.31	16.15	11.13
128	33.49	31.95	22.62	18.98	15.96	11.10
64	33.26	31.51	22.41	18.91	15.86	11.10
32	32.93	31.34	22.15	18.95	15.85	11.12

Table D.1: OPT ppl on wikitext/ptb/c4 (full results of Table 2).

Precision	125 m	350m	1.3b	2.7 b	6.7 b	13b	30b	66b
W16-A16	27.65/32.55/24.61	22.00/26.08/20.71	14.62/16.97/14.72	12.47/15.11/13.17	10.86/13.09/11.74	10.13/12.34/11.20	9.56/11.84/10.69	9.34/11.36/10.28
W8A888m-A16	27.64/32.53/24.65	22.06/26.10/20.72	14.63/16.98/14.73	12.48/15.13/13.17	10.85/13.11/11.75	10.12/12.34/11.20	9.55/11.85/10.70	9.34/11.36/10.29
W8 ${ }^{\text {asym }}$-A16	27.71/32.58/24.64	22.04/26.12/20.73	14.67/16.99/14.73	12.50/15.14/13.17	10.86/13.11/11.75	10.11/12.34/11.20	9.55/11.84/10.69	9.35/11.36/10.29
W $4{ }^{\text {sym }}$-A16	45.89/53.68/36.68	25.95/31.11/23.94	19.85/23.61/18.90	22.86/30.01/22.29	12.41/17.05/13.62	11.06/14.90/12.23	10.18/13.26/11.86	57.73/134.91/98.51
W $4^{\text {asymm }}$-A16	36.71/44.76/30.92	25.51/30.90/23.86	19.38/21.95/17.93	17.92/22.48/18.32	11.91/15.39/13.01	10.67/13.53/12.07	10.10/13.13/11.33	20.24/48.45/25.86
W16-A8 $8^{\text {sym }}$	27.96/32.57/24.69	22.06/26.42/20.95	15.21/18.18/15.81	12.98/16.01/13.89	20.99/25.94/31.18	3341.50/2618.38/3554.59	1681.48/2221.62/2241.53	2696.91/2647.41/2569.94
W16-A8 $8^{\text {asym }}$	27.84/32.60/24.66	22.04/26.22/20.81	15.14/17.65/15.39	12.51/15.38/13.38	11.24/14.17/12.45	11.83/18.87/15.39	14.08/31.54/25.09	442.66/524.57/716.83

Table D.2: BLOOM ppl on wikitext/ptb/c4 (full results of Table 3).

Precision	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
W16-A16	$22.43 / 41.25 / 24.38$	$17.69 / 46.98 / 20.29$	$15.39 / 27.93 / 17.97$	$13.48 / 23.12 / 16.14$	$11.37 / 19.40 / 14.13$	$8.11 / 13.62 / 10.97$
W8 $^{\text {sym }}-A 16$	$22.44 / 41.28 / 24.39$	$17.70 / 47.01 / 20.29$	$15.40 / 27.91 / 17.98$	$13.49 / 23.14 / 16.14$	$11.37 / 19.40 / 14.13$	$8.11 / 13.63 / 10.98$
W8 $^{\text {asym }}-\mathrm{A} 16$	$22.43 / 41.24 / 24.40$	$17.69 / 47.00 / 20.29$	$15.40 / 27.96 / 17.97$	$13.48 / 23.14 / 16.14$	$11.37 / 19.40 / 14.13$	$8.10 / 13.62 / 10.98$
W4 $^{\text {sym }}-A 16$	$26.49 / 49.73 / 27.98$	$20.27 / 56.64 / 22.81$	$17.47 / 32.20 / 19.88$	$14.96 / 25.59 / 17.51$	$12.38 / 21.36 / 15.06$	$8.40 / 14.15 / 11.30$
W4 $^{\text {asym-A16 }}$ -	$25.31 / 46.79 / 27.10$	$23.90 / 68.31 / 25.99$	$16.93 / 31.02 / 19.47$	$14.65 / 25.12 / 17.26$	$12.06 / 20.83 / 14.83$	$8.34 / 14.03 / 11.23$
W16-A8 $^{\text {sym }}$	$22.50 / 41.58 / 24.46$	$17.78 / 47.28 / 20.38$	$15.57 / 28.36 / 18.13$	$13.57 / 23.38 / 16.25$	$11.58 / 19.92 / 14.35$	$8.75 / 14.94 / 12.61$
W16-A8 $^{\text {asym }}$	$22.45 / 41.37 / 24.42$	$17.71 / 47.05 / 20.32$	$15.45 / 28.09 / 18.02$	$13.52 / 23.24 / 16.19$	$11.47 / 19.71 / 14.25$	$8.41 / 14.52 / 11.93$

Table D.3: OPT ppl on wikitext/opt/c4 with W4 asym-A16 (full table of Table 4). See Table D. 4 for all learning rate results of ZQ-Local and Table D. 5 of ZQ-Global.

Precision	125 m	350 m	1.3 b	2.7 b	6.7 b	13 b	30 b	66 b
RTN	$36.71 / 44.76 / 30.92$	$25.51 / 30.90 / 23.86$	$19.38 / 21.95 / 17.93$	$17.92 / 22.48 / 18.32$	$11.91 / 15.39 / 13.01$	$10.67 / 13.53 / 12.07$	$10.10 / 13.13 / 11.33$	$20.24 / 48.45 / 25.86$
GPTQ	$32.52 / 40.25 / 27.78$	$23.50 / 29.14 / 22.41$	$15.52 / 18.16 / 15.56$	$13.02 / 15.84 / 13.73$	$11.16 / 13.59 / 12.08$	$10.29 / 12.61 / 11.35$	$9.61 / 11.95 / 10.79$	$9.54 / 11.67 / 10.52$
ZQ-Local *	$33.05 / 39.34 / 28.11$	$24.40 / 29.22 / 22.82$	$15.81 / 18.66 / 15.76$	$13.22 / 16.19 / 13.96$	$11.32 / 13.79 / 12.26$	$10.42 / 12.90 / 11.60$	$9.97 / 12.32 / 11.03$	$9.91 / 11.87 / 10.59$
ZQ-Global *	$31.44 / 36.66 / 27.21$	$23.32 / 28.05 / 21.98$	$15.46 / 18.31 / 15.67$	$13.03 / 16.04 / 13.83$	$11.30 / 13.69 / 12.17$	$10.38 / 12.85 / 11.62$	$9.90 / 12.24 / 10.99$	$9.62 / 11.81 / 10.61$

Table D.4: OPT ppl on wikitext/opt/c4 with W4 $4^{\text {asym }}$-A16 and ZQ-Local.

LR (W4 $\left.{ }^{\text {asym }}-\mathrm{A} 16\right)$	125 m	350 m	1.3 b	2.7 b	6.7 b	13 b	30 b	66 b
0.001	$33.67 / 39.45 / 29.11$	$26.33 / 31.94 / 24.49$	$16.27 / 19.91 / 16.46$	$14.34 / 17.76 / 14.93$	$11.87 / 15.04 / 13.06$	$13.68 / 18.89 / 14.46$	$171.35 / 151.55 / 46.14$	$814.22 / 601.74 / 308.53$
0.0005	$33.76 / 39.51 / 28.64$	$25.88 / 30.95 / 23.96$	$16.29 / 9.92 / 16.27$	$14.16 / 17.65 / 4.49$	$11.92 / 15.23 / 12.95$	$10.93 / 13.82 / 12.03$	$10.23 / 13.46 / 11.44$	$10.10 / 12.27 / 10.81$
0.0001	$33.86 / 40.01 / 28.29$	$24.64 / 30.26 / 23.33$	$16.07 / 19.25 / 15.93$	$14.36 / 17.38 / 14.41$	$11.85 / 14.64 / 12.74$	$10.93 / 13.48 / 11.88$	$10.18 / 12.67 / 11.13$	$10.12 / 12.01 / 10.67$
$5 \mathrm{e}-05$	$33.05 / 39.34 / 28.11$	$25.42 / 29.65 / 23.22$	$15.79 / 19.16 / 15.88$	$13.70 / 16.80 / 14.16$	$11.71 / 14.32 / 12.41$	$10.75 / 13.38 / 11.77$	$9.95 / 12.54 / 11.09$	$10.02 / 11.89 / 10.64$
le-05	$33.78 / 40.41 / 28.84$	$24.40 / 29.22 / 22.82$	$15.81 / 18.66 / 15.76$	$13.55 / 16.46 / 13.96$	$11.32 / 13.79 / 12.26$	$10.54 / 13.05 / 11.61$	$9.98 / 12.22 / 10.99$	$9.91 / 11.87 / 10.59$
$5 \mathrm{e}-06$	$34.47 / 41.04 / 29.02$	$24.50 / 29.27 / 23.00$	$16.01 / 18.73 / 15.91$	$13.22 / 16.19 / 13.96$	$11.33 / 13.86 / 12.29$	$10.42 / 12.90 / 11.60$	$9.86 / 12.33 / 10.97$	$9.97 / 11.86 / 10.60$
$1 \mathrm{e}-06$	$35.88 / 43.69 / 30.35$	$24.54 / 29.87 / 23.17$	$16.77 / 19.45 / 16.47$	$13.60 / 17.02 / 14.46$	$11.41 / 14.10 / 12.41$	$10.53 / 13.01 / 11.70$	$9.97 / 12.33 / 11.04$	$10.01 / 11.93 / 10.66$

Table D.5: OPT ppl on wikitext/opt/c4 with W4 $4^{\text {asym }}-\mathrm{A} 16$ and ZQ-Global. NaN here means the PPL is larger than 1e6.

LR (W4 ${ }^{\text {aspm }}$-A16)	125m	350 m	1.3 b	2.7 b	6.7 b	13b	30b	66 b
0.001	4057.13/2718.91/12477.78	5071.35/5299.93/687.35	12105.25/10154.73/7893.43	18965.76/17112.60/16316.31	60014.66/56041.86/78085.84	232421.09988305.32/119762.73	93917.09 /70170.34/51124.06	NaN
0.0005	31.94/38.61/27.17	27.11/33.91/24.07	10900.84/8322.65/8425.10	14412.30/8676.76/10154.55	18527.46/15530.12/13029.95	109006.53/62584.41/125349.50	303235.75/230599.62 /430480.03	36439.32/30554.19/33756.93
0.0001	31.44/36.66/27.21	24.08/29.08/22.27	15.91/20.08/16.35	118.38/53.47/54.08	7604.92/5339.10/5161.49	12638.86/7639.95/8243.63	16276.68/9890.26/6176.27	8367.31/4728.13/5533.59
$5 \mathrm{e}-05$	31.97/36.93/27.12	23.55/28.06/22.02	15.82/18.65/15.65	13.40/16.44/13.97	26.54/25.67/17.60	909.99/316.82/370.84	6238.21/3291.04/3743.01	9296.98/6687.44/5363.29
1e-05	32.31/37.93/27.38	23.32/28.05/21.98	15.60/18.42/15.64	13.09/16.05/ 13.78	11.41/13.82//12.20	10.80/13.16/11.66	10.06/12.44/11.07	9.73/12.09/10.98
$5 \mathrm{e}-06$	32.69 38.91/27.76	23.26/28.33/22.05	15.46/18.31/15.67	13.03/16.04/13.83	11.30/13.69/12.17	10.50/12.89/11.58	9.95/12.28/11.01	9.62/11.81/10.61
1e-06	34.63/41.75/29.43	23.82/28.96/22.48	16.12/19.46/16.27	13.03/16.27/14.04	11.29/13.88/12.27	10.38/12.85/11.62	9.90/12.24/10.99	9.58/12.17/10.78
$5 \mathrm{e}-07$	NaN	NaN	NaN	NaN	NaN	10.51/12.96/11.70	9.89/12.41/11.04	$9.90 / 12.45 / 11.00$
1e-07	NaN	NaN	NaN	NaN	NaN	10.63/13.29/11.89	10.02/12.82/11.18	11.03/13.91/11.73
$5 \mathrm{e}-08$	NaN	NaN	NaN	NaN	NaN	10.66/13.42/11.97	10.05/13.00/11.24	12.41/17.45/13.02

Table D.6: BLOOM ppl on wikitext/opt/c4 with W4 asym -A 16 (full table of Table 5). See Table D. 7 for all learning rate results of ZQ-Local and Table D. 8 of ZQ-Global.

Precision	560 m	1.1 b	1.7 b	3 b	7.1 b	176 b
RTN	$25.31 / 46.79 / 27.10$	$23.90 / 68.31 / 25.99$	$16.93 / 31.02 / 19.47$	$14.65 / 25.12 / 17.26$	$12.06 / 20.83 / 14.83$	$8.34 / 14.03 / 11.23$
GPTQ	$23.90 / 43.76 / 25.59$	$24.34 / 68.10 / 26.58$	$16.36 / 29.58 / 18.79$	$14.10 / 24.23 / 16.66$	$11.80 / 20.23 / 14.47$	$8.22 / 13.78 / 11.07$
ZQ-Local *	$24.23 / 44.94 / 26.05$	$19.22 / 52.36 / 21.59$	$16.37 / 29.89 / 18.86$	$14.23 / 24.41 / 16.86$	$11.80 / 20.28 / 14.56$	$8.27 / 13.91 / 11.16$
ZQ-Global *	$23.84 / 44.17 / 25.60$	$19.50 / 51.33 / 21.72$	$16.19 / 29.28 / 18.66$	$14.14 / 24.16 / 16.69$	$11.77 / 20.27 / 14.52$	$8.24 / 13.82 / 11.10$

Table D.7: BLOOM ppl on wikitext/opt/c4 with W4 ${ }^{\text {asym }}$-A16 and ZQ-Local.

LR $\left(W 44^{\text {asym }}-\mathrm{A} 16\right)$	560 m	1.1 b	1.7 b	3 b	176 b	
0.001	$25.37 / 47.36 / 27.03$	$19.89 / 53.86 / 22.11$	$16.70 / 31.19 / 19.30$	$14.45 / 25.28 / 17.16$	$12.22 / 21.34 / 15.04$	$8.82 / 15.77 / 11.98$
0.0005	$25.17 / 46.83 / 26.87$	$19.57 / 53.66 / 21.92$	$16.58 / 30.27 / 19.15$	$14.43 / 25.47 / 17.07$	$11.94 / 20.54 / 14.67$	$8.35 / 14.01 / 11.20$
0.0001	$24.59 / 46.11 / 26.32$	$19.22 / 52.36 / 21.59$	$16.41 / 30.29 / 18.90$	$14.35 / 24.81 / 16.87$	$11.83 / 20.34 / 14.58$	$8.28 / 13.92 / 11.14$
$5 \mathrm{e}-05$	$24.44 / 46.04 / 26.16$	$23.28 / 65.68 / 25.42$	$16.39 / 30.01 / 18.86$	$14.34 / 24.43 / 16.83$	$11.80 / 20.28 / 14.56$	$8.27 / 13.93 / 11.15$
$1 \mathrm{e}-05$	$24.23 / 44.94 / 26.05$	$23.45 / 66.29 / 25.52$	$16.37 / 29.89 / 18.86$	$14.23 / 24.41 / 16.86$	$11.84 / 20.39 / 14.58$	$8.27 / 13.91 / 11.16$
5e-06	$24.21 / 45.21 / 26.10$	$23.26 / 65.72 / 25.42$	$16.42 / 30.09 / 18.94$	$14.25 / 24.55 / 16.87$	$11.87 / 20.50 / 14.61$	$8.29 / 13.98 / 11.16$
$1 \mathrm{e}-06$	$24.71 / 45.86 / 26.50$	$23.45 / 66.28 / 25.56$	$16.64 / 30.52 / 19.15$	$14.46 / 24.76 / 17.04$	$11.94 / 20.55 / 14.70$	$8.29 / 13.97 / 11.18$

Table D.8: BLOOM ppl on wikitext/opt/c4 with W4 ${ }^{\text {asym }}$-A16 and ZQ-Global.

LR ($\mathrm{W} 4^{\text {asym }}$-A16)	560 m	1.1b	1.7b	3b	7.1b	176b
0.001	6853935.00/30441738.00/3222857.25	528072.88/828428.62/356031.97	597410.50/973155.88/1280478.12	878460.69/2175974.25/441401.94	nan/nan/nan	NaN
0.0005	29671.52/1795030.88/4653.35	28112.96/87515.64/1826.82	141110.14/204295.86/40146.11	265457.25/741326.38/99882.45	944784.19/774538.25/395960.03	NaN
0.0001	23.92/45.68/25.72	19.34/52.78/21.63	16.35/29.22/18.76	14.27/24.46/16.80	12.17/22.16/14.80	NaN
$5 \mathrm{e}-05$	23.84/44.17/25.60	19.50/51.33/21.72	16.19/29.28/18.66	14.14/24.16/16.69	11.81/20.41/14.50	NaN
le-05	23.85/44.20/25.65	22.64/56.79/23.41	16.23/29.73/18.73	14.14/24.31/16.74	11.77/20.27/14.52	8.24/13.82/11.10
$5 \mathrm{e}-06$	24.02/44.62/25.79	23.46/63.27/24.88	16.28/29.83/18.81	14.19/24.38/16.80	11.77/20.33/14.54	8.24/13.82/11.10
le-06	24.46/45.41/26.20	24.62/70.16/26.64	16.48/30.15/19.02	14.35/24.56/16.95	11.89/20.54/14.67	8.23/13.82/11.12
$5 \mathrm{e}-07$	NaN	NaN	NaN	NaN	NaN	8.26/13.86/11.13

Table D.9: OPT ppl on wikitext/opt/c4 with $\mathrm{W} 4^{\text {asym }}$ - $\mathrm{A} 8^{\text {sym }} / \mathrm{A} 8^{\text {asym }}$ (full table of Table 6). See Table D. 10 for all learning rate results of ZQ-Local and Table D. 11 of ZQ-Global.

Precision	125m	350m	1.3b	2.7 b	6.7 b	13b	30b	66 b
W4 ${ }^{\text {asym }}$-A8 $8^{\text {sym }}$ Block								
RTN	36.69/44.34/30.60	26.59/32.13/24.81	25.31/26.89/22.01	30.84/35.73/29.01	164.51/110.85/162.94	4460.61/3145.51/4255.84	3216.45/2929.40/3570.19	3038.22/2930.92/3001.82
GPTQ	32.20/38.49/27.47	24.35/29.82/23.24	16.28/19.64/16.73	13.86/17.51/15.00	46.22/53.98/55.13	3611.71/2796.71/3820.57	1738.44/1810.08/2119.82	5992.87/4115.01/4360.16
ZQ-Local ${ }^{*}$	32.88/38.23/28.20	25.18/30.06/23.62	16.78/20.25/17.09	14.82/18.77/15.61	16.08/21.15/18.77	2680.33/1876.48/3052.51	1884.90/1603.23/1348.08	575.20/499.42/437.94
ZQ-Global*	32.04/37.48/27.23	24.01/28.81/22.57	16.12/19.15/16.23	13.98/17.70/14.87	38.27/39.77/52.26	117.83/141.63/96.83	253.71/700.40/337.15	1715.98/1546.50/1799.35
W4 ${ }^{\text {asym }}$-A8 $8^{\text {asym }}$ Block								
RTN	36.61/44.48/30.64	25.79/31.28/24.13	21.23/23.54/19.19	23.82/29.77/22.60	13.18/17.04/14.19	19.87/32.93/26.28	36.07/136.88/85.84	627.15/880.79/937.08
GPTQ	32.22/38.83/27.43	23.90/29.29/22.63	15.75/18.74/15.93	13.23/16.31/14.03	12.50/15.86/13.29	12.79/21.99/17.05	12.96/25.03/24.14	495.70/681.68/768.69
ZQ-Local ${ }^{*}$	33.60/38.57/28.02	24.57/29.27/22.98	15.98/19.13/16.20	13.44/16.81/14.26	11.76/14.97/13.00	11.69/16.98/14.01	12.38/24.25/18.96	12.19/23.31/13.47
ZQ-Global*	31.61/37.00/27.10	23.66/28.56/22.21	15.77/18.61/15.83	13.09/16.56/14.00	12.03/14.60/12.86	11.80/15.01/12.41	12.94/17.61/13.41	31.51/58.00/23.95

Table D.10: OPT ppl on wikitext/opt/c4 with $\mathrm{W} 4^{\text {asym }}-\mathrm{A} 8^{\text {sym }} / \mathrm{A} 8^{\text {asym }}$ and ZQ-Local.

Precision	125m	350m	1.3b	2.7b	6.7b	13b	30b	66 b
W4 ${ }^{\text {asym }}$-A8 $8^{\text {sym }}$ Block								
0.001	34.91/40.43/29.37	26.82/32.68/25.24	17.68/21.72/18.11	19.40/27.59/20.05	36.70/59.32/45.17	7240.89/5506.67/4889.34	8229.32/5068.14/5005.13	Diverge
0.0005	34.16/39.00/28.58	26.75/32.05/24.60	17.19/21.42/17.55	19.43/25.54/19.41	29.33/48.38/43.28	56836.57/36810.64/31073.67	5448.96/3826.63/3196.49	575.20/499.42/437.94
0.0001	32.88/38.23/28.20	25.31/31.60/23.98	16.93/20.77/17.36	17.05/21.50/17.42	25.24/31.66/26.82	6125.07/3817.01/4121.70	1884.90/1603.23/1348.08	5427.12/3449.58/3289.01
$5 \mathrm{e}-05$	32.86/39.17/27.91	25.91/31.24/24.07	16.99/20.02/17.23	15.07/19.00/15.54	16.08/21.15/18.77	6037.51/3617.64/3819.63	3266.46/2533.64/2463.21	11631.78/10489.81/7880.43
1e-05	34.00/39.76/28.62	25.40/30.60/23.75	16.87/20.26/17.11	14.82/18.77/15.61	26.60/32.09/28.76	5346.85/3788.29/4903.31	3364.70/2372.71/3370.97	5793.44/3544.90/3925.34
5e-06	34.37/41.46/28.71	25.18/30.06/23.62	16.78/20.25/17.09	14.87/19.42/15.86	34.53/39.98/38.22	2680.33/1876.48/3052.51	3566.45/2532.54/3678.75	4916.96/3783.69/3716.49
1e-06	36.05/43.46/30.00	25.73/30.69/24.05	19.58/22.57/19.04	18.66/24.19/19.98	77.99/62.27/83.19	3893.00/2672.11/3849.59	3233.72/2944.44/3732.18	4238.57/3621.09/3541.33
W4 ${ }^{\text {asym }}$-A8 $8^{\text {asym }}$ Block								
0.001	33.57/40.84/29.00	27.29/32.48/24.68	17.41/20.70/17.07	15.98/20.45/16.23	12.63/17.21/14.25	9889.96/7605.54/6328.91	2009.66/1637.69/2011.15	5070.07/3124.56/2683.19
0.0005	34.58/40.45/28.69	25.81/31.56/24.09	16.89/20.66/16.93	15.00/19.47/15.61	12.55/17.00/14.29	13.18/19.65/15.18	36.51/75.89/60.58	3249.10/63.17/119.55
0.0001	33.91/38.39/28.12	25.37/31.24/23.66	16.78/20.09/16.72	14.26/18.49/14.90	12.13/15.97/13.48	13.48/20.42/16.68	110.20/117.28/257.96	12.19/23.31/13.47
$5 \mathrm{e}-05$	33.60/38.57/28.02	24.67/29.60/23.34	16.31/19.56/16.42	13.90/19.16/15.05	12.30/15.95/13.56	12.05/18.00/15.77	37.68/59.83/124.75	29.72/95.99/69.60
1e-05	33.80/40.21/28.56	24.57/29.27/22.98	15.98/19.13/16.20	13.44/16.81/14.26	11.76/14.97/13.00	11.69/16.98/14.01	14.39/31.47/24.45	217.93/313.13/298.24
$5 \mathrm{e}-06$	34.62/41.07/28.93	24.68/29.46/23.12	16.26/19.23/16.27	13.44/17.00/14.36	11.96/14.86/13.10	12.31/18.55/15.16	12.38/24.25/18.96	85.96/185.07/180.88
1e-06	35.94/43.35/30.00	24.92/30.18/23.45	17.98/20.89/17.45	14.79/18.90/15.52	12.10/15.47/13.35	15.48/22.00/17.84	14.86/31.16/26.21	411.89/620.52/652.55

Table D.11: OPT ppl on wikitext/opt/c4 with W4 $4^{\text {asym }}-\mathrm{A} 8^{\text {sym }} / \mathrm{A} 8^{\text {asym }}$ and ZQ-Global.

Precision	125m	350 m	1.3b	2.7 b	6.7b	13b	30b	66 b
W4 $4^{\text {mym }}$ m $\mathrm{A}^{\text {grmm }}$ Block								
	34.90/44.82/28.27	8988.08/5862.33/384.69	nan/nan/nan	18290.16/9784.37/12099.01	16014.50/8655.69/12304.55	248961.98/84832.78/104880.55	56675.05/23709.03/33007.17	29782.43/20410.10/23559.66
0.0005	31.78/38.56/27.20	39.24/54.15/29.76	10610.96/9438.99/6752.84	12499.29/8411.26/10677.01	nan/nan/nan	74731.13/44494.68/29286.49	$51871.73 / 285448.95 / 23056.78$	18717.63/11744.97/12903.33
0.0001	$32.04 / 37.48 / 27.23$	24.14/29.21/22.47	17.04/23.64/17.13	175.67/165.81/162.24	12305.50/1472.90/10223.89	16303.04/10731.12/10669.52	22548.81/12474.28/7405.46	7926.43/4377..36/4805.98
$5 \mathrm{e}-05$	32.16/37.54/27.27	24.15/28.87/22.46	16.02/19.61/ 16.59	13.88/20.27/14.79	5241.10/3284.47/2187.15	13297.25/7781.85/7467.30	9542.44/4543.45/5373.00	NaN
1e-05	32.57/38.43/27.53	24.01/28.81/22.57	16.12/19.15/16.23	13.98/17.70/14.87	99.27/118.19/88.74	529.82/361.44/256.46	1936.12/1388.68/947.45	10077.70/9208.34/11462.28
5 -06	32.83/38.37/27.71	24.13/29.30/22.68	16.45/19.64/16.57	14.42/18.01/15.27	70.26/62.28/54.47	373.82/494.33/170.40	820.90/847.19/543.59	1867.57/1878.76/4117.49
1e-06	34.79/41.79/29.30	24.68/30.01/23.23	17.90/21.94/18.01	14.83/18.63/15.70	38.27/39.77/52.26	117.83/141.63/96.83	261.19/844.40/272.04	1500.51/1275.54/1649.50
$5 \mathrm{C}-07$	NaN	NaN	NaN	NaN	NaN	NaN	253.71/700.40/337.15	1715.98/1546.50/1799.35
1e-07	NaN	NaN	NaN	NaN	NaN	$\mathrm{NaN}^{\text {a }}$	$913.95 / 1117.58 / 1065.87$	2012.91/1917.48/1817.92
W4 $4^{\text {asymm}}$ - $8^{\text {asym }}$ Block								
0.001	37.89/47.68/30.43	9023.01/4309.50/1186.96	12638.86/nan/9164.64	11285.86/6477.19/nan	12222.01/6933.34/8989.30	132962.69 /73768.05/59268.76	328993.91/187752.97/163157.59	48298.52/30548.89/42797.96
0.0005	32.65/39.86/27.20	28.46/36.94/24.68	nan/nan/nan	nan/nan/nan	23287.96/15508.32/16243.28	20052.30/10852.90/11588.02	63084.59/39919.41/42499.90	
0.0001	31.61/37.00/27.10	24.64/29.13/22.28	16.31/19.71/16.44	43.76/29.11/33.35	22024.01/ 13962.04/14130.94	10171.49/7200.78/7954.12	18603.08//1639.42/10798.26	nan/man/nan
$5 \mathrm{e}-05$	32.21/37.46/27.18	23.66/28.56/22.21	16.02/19.02/15.92	13.48/17.57/14.24	839.48/213.76/286.05	1035.13/nan/1472.08	8085.92/3545.21/4893.07	nan/man/nan
1e-05	32.35/38.21/27.38	23.59/28.66/22.24	15.77/18.61/15.83	13.09/16.56/14.00	12.09/14.69/12.90	11.80/15.01/12.41	13.76/22.87/15.72	974.58/1557.95/1039.65
$5 \mathrm{C}-06$	32.59/38.49/27.68	23.62/28.63/22.33	15.78/18.80/15.95	13.23/16.65/14.12	12.03/14.60/12.86	12.72/16.31/13.20	12.94/17.61/13.41	83.35/137.83/128.11
1e-06	34.68/41.56/29.26	24.08/29.21/22.68	16.66/20.03/16.69	13.30/16.74/14.33	12.43/15.52/13.36	12.28/16.13/13.19	16.00/19.60/14.88	31.51/58.00/23.95
5 5-07	NaN	31.09/73.23/24.44						
1e-07	NaN	241.81/544.81/505.58						

Table D.12: BLOOM ppl on wikitext/opt/c4 with W4 $4^{\text {asym }}$ - $\mathrm{A} 8^{\text {sym }} / \mathrm{A} 8^{\text {asym }}$ (full table of Table 7). See Table D. 13 for all learning rate results of ZQ-Local and Table D. 14 of ZQ-Global.

Precision	560 m	1.1 b	1.7 b	3 b	176 b	
W4 $^{\text {asym }}$-A8 $^{\text {sym }}$ Block						
RTN	$25.56 / 47.53 / 27.31$	$24.80 / 70.99 / 26.71$	$17.36 / 31.95 / 19.89$	$14.82 / 25.63 / 17.47$	$12.33 / 21.62 / 15.13$	$9.12 / 15.58 / 14.04$
GPTQ	$24.13 / 44.79 / 25.86$	$25.69 / 68.65 / 27.08$	$16.63 / 30.54 / 19.12$	$14.18 / 24.42 / 16.82$	$12.04 / 21.07 / 14.75$	$8.92 / 15.16 / 13.56$
ZQ-Local *	$24.45 / 45.73 / 26.22$	$19.50 / 52.67 / 21.73$	$16.71 / 30.23 / 19.09$	$14.37 / 24.72 / 16.99$	$12.00 / 20.79 / 14.78$	$8.52 / 14.29 / 11.41$
ZQ-Global *	$23.93 / 44.31 / 25.68$	$19.71 / 51.98 / 21.85$	$16.34 / 29.36 / 18.82$	$14.13 / 24.34 / 16.76$	$11.84 / 20.58 / 14.59$	$8.76 / 14.60 / 11.68$
W4 asym-A8						
RTN						
GPTQ						
GPlock	$25.37 / 46.99 / 27.16$	$24.08 / 68.95 / 26.17$	$17.12 / 31.46 / 19.67$	$14.74 / 25.38 / 17.37$	$12.22 / 21.36 / 15.00$	$8.73 / 15.10 / 12.83$
ZQ-Local *	$24.09 / 44.29 / 25.66$	$24.50 / 67.37 / 26.62$	$16.39 / 29.83 / 18.91$	$14.13 / 24.47 / 16.73$	$11.91 / 20.72 / 14.62$	$8.55 / 14.74 / 12.31$
ZQ-Global *	$24.29 / 45.19 / 26.10$	$19.13 / 52.89 / 21.63$	$16.54 / 30.11 / 18.92$	$14.32 / 24.73 / 16.94$	$11.94 / 20.63 / 14.68$	$8.33 / 14.01 / 11.22$

Table D.13: BLOOM ppl on wikitext/opt/c4 with $\mathrm{W} 4^{\text {asym }}-\mathrm{A} 8^{\text {sym }} / \mathrm{A} 8^{\text {asym }}$ and ZQ-Local.

Precision	560 m	1.1 b	1.7 b	3 b		7.1 b
W4 $^{\text {asym }}$-A8 $8^{\text {sym }}$ Block						
0.001	$25.51 / 47.89 / 27.15$	$19.73 / 54.63 / 22.18$	$16.96 / 31.47 / 19.44$	$14.59 / 25.69 / 17.32$	$12.51 / 21.85 / 15.34$	$8.62 / 14.42 / 11.50$
0.0005	$25.18 / 47.35 / 26.95$	$19.62 / 53.64 / 22.03$	$16.98 / 31.75 / 19.47$	$14.52 / 25.22 / 17.18$	$12.03 / 21.01 / 14.82$	$8.59 / 14.38 / 11.45$
0.0001	$24.79 / 46.37 / 26.44$	$19.50 / 52.67 / 21.73$	$16.68 / 30.51 / 19.18$	$14.44 / 25.12 / 17.05$	$12.00 / 20.79 / 14.78$	$8.52 / 14.29 / 11.41$
$5 \mathrm{e}-05$	$24.56 / 46.29 / 26.34$	$23.93 / 69.17 / 26.19$	$16.71 / 30.23 / 19.09$	$14.37 / 24.72 / 16.99$	$12.05 / 20.92 / 14.82$	$8.55 / 14.34 / 11.44$
$1 \mathrm{e}-05$	$24.45 / 45.73 / 26.22$	$23.65 / 66.73 / 25.80$	$16.66 / 30.69 / 19.16$	$14.40 / 24.94 / 17.02$	$12.12 / 21.14 / 14.86$	$8.65 / 14.97 / 12.01$
$5 \mathrm{e}-06$	$24.48 / 45.66 / 26.33$	$23.87 / 67.26 / 25.84$	$16.78 / 30.72 / 19.23$	$14.44 / 24.91 / 17.07$	$12.15 / 21.23 / 14.88$	$8.70 / 15.04 / 12.37$
$1 \mathrm{e}-06$	$24.91 / 46.35 / 26.72$	$24.09 / 68.13 / 26.05$	$17.03 / 31.28 / 19.52$	$14.60 / 25.18 / 17.24$	$12.22 / 21.31 / 14.99$	$8.91 / 15.25 / 13.35$
W4 $^{\text {asym_A8 }}{ }^{\text {asym }}$ Block						
0.001	$25.26 / 46.43 / 26.98$	$19.69 / 54.26 / 22.14$	$16.88 / 32.16 / 19.40$	$15.15 / 26.58 / 17.76$	$12.40 / 22.29 / 15.28$	$8.40 / 14.06 / 11.26$
0.0005	$24.89 / 47.99 / 26.82$	$19.54 / 53.57 / 21.98$	$16.73 / 31.02 / 19.29$	$14.50 / 25.52 / 17.11$	$11.94 / 20.70 / 14.76$	$8.33 / 14.01 / 11.22$
0.0001	$24.60 / 45.75 / 26.44$	$19.13 / 52.89 / 21.63$	$16.54 / 30.36 / 19.10$	$14.37 / 24.91 / 16.93$	$11.94 / 20.63 / 14.68$	$8.35 / 14.04 / 11.24$
$5 \mathrm{e}-05$	$24.41 / 45.08 / 26.23$	$23.59 / 67.14 / 25.79$	$16.54 / 30.11 / 18.92$	$14.29 / 24.83 / 16.92$	$11.95 / 20.71 / 14.71$	$8.36 / 14.10 / 11.25$
$1 \mathrm{e}-05$	$24.29 / 45.19 / 26.10$	$23.35 / 65.26 / 25.38$	$16.51 / 30.20 / 19.00$	$14.32 / 24.73 / 16.94$	$11.97 / 20.93 / 14.74$	$8.44 / 14.30 / 11.45$
$5 \mathrm{e}-06$	$24.31 / 45.25 / 26.15$	$23.41 / 66.18 / 25.48$	$16.63 / 30.37 / 19.09$	$14.33 / 24.74 / 16.96$	$12.03 / 20.95 / 14.78$	$8.52 / 14.66 / 11.86$
$1 \mathrm{e}-06$	$24.76 / 45.92 / 26.62$	$23.52 / 66.38 / 25.66$	$16.81 / 30.71 / 19.30$	$14.53 / 24.92 / 17.14$	$12.10 / 21.07 / 14.87$	$8.62 / 14.92 / 12.41$

Table D.14: BLOOM ppl on wikitext/opt/c4 with $\mathrm{W} 4^{\text {asym }}-\mathrm{A} 8^{\text {sym }} / \mathrm{A} 8^{\text {asym }}$ and ZQ-Global.

Precision	560m	1.1b	1.7 b	3b	7.1b	176b
W4 $4^{\text {asym }}$-A $8^{\text {sym }}$ Block						
0.001	174250016.00/201477664.00/1348168.88	423532.56/906908.06/322995.69	573201.81/1089364.38/498071.91	544376.56/696942.56/540949.06	nan/nan/nan	NaN
0.0005	70978.52/29214230.00/1151.72	2880.81/15732.60/309.13	505479.44/629035.56/29283.36	140595.53/181082.25/33785.79	378033.53/789890.00/191543.91	NaN
0.0001	24.04/45.38/25.83	19.44/52.38/21.77	16.34/29.36/18.82	14.32/24.74/16.88	12.12/22.00/14.80	249.47/26690.76/26.96
$5 \mathrm{e}-05$	23.93/44.31/25.68	19.71/51.98/21.85	16.18/29.71/18.71	14.13/24.34/16.76	11.84/20.58/14.59	9.00/15.57/11.61
le-05	23.99/44.44/25.77	22.75/58.31/23.63	16.28/29.96/18.81	14.29/24.53/16.87	11.87/20.57/14.64	8.76/14.60/11.68
5e-06	24.14/44.77/25.90	23.90/64.81/25.29	16.36/30.03/18.91	14.32/24.68/16.95	11.91/20.60/14.71	9.07/15.12/11.98
le-06	24.62/45.70/26.33	25.55/71.49/27.44	16.61/30.47/19.17	14.51/24.91/17.11	12.06/20.93/14.86	11.25/19.93/15.76
W $4^{\text {asym }}$ A $8^{\text {asym }}$ Block						
0.001	9059092.00/2932002.50/131873960.00	499829.19/393190.53/346682.47	1260531.12/2019747.88/460627.16	1022130.19/872164.88/679662.62	nan/nan/nan	NaN
0.0005	7633.14/378055.53/1032.16	4271.83/85847.50/1555.66	87087.04/217513.30/37000.13	575008.56/814032.50/230285.80	1212241.00/2389840.25/1504266.50	NaN
0.0001	23.96/45.36/25.80	19.37/52.25/21.88	16.29/29.36/18.81	14.32/24.66/16.86	12.05/22.30/14.77	1400.84/11880.12/392.79
$5 \mathrm{e}-05$	23.86/44.16/25.62	19.54/51.72/21.79	16.23/29.40/18.68	14.15/24.29/16.72	11.82/20.44/14.54	8.73/20.30/11.41
1e-05	23.96/44.24/25.72	22.55/58.10/23.49	16.27/29.82/18.78	14.16/24.35/16.80	11.80/20.37/14.56	8.62/14.40/11.49
$5 \mathrm{e}-06$	24.01/44.68/25.83	23.67/64.20/25.08	16.30/29.96/18.85	14.24/24.49/16.86	11.81/20.50/14.60	8.69/14.56/11.58
1e-06	24.53/45.60/26.26	24.82/71.17/26.84	16.55/30.35/19.10	14.40/24.76/17.01	11.97/20.83/14.77	9.14/16.63/17.69

Table D.15: OPT full results of Table 8.

Method	125 m	350 m	1.3b	2.7b	6.7b	13b	30b	66b
$\mathrm{BS}=1024$								
RTN	N/A	25.42/30.62/23.61	16.90/19.78/16.59	N/A	11.63/14.41/12.65	10.47/13.09/11.75	9.97/12.40/11.09	9.83/12.31/10.77
	N/A	26.55	17.76	N/A	12.90	11.77	11.15	10.97
GPTQ	N/A	23.65/29.09/22.43	15.16/18.00/15.34	N/A	11.10/13.40/11.99	10.28/12.49/11.29	9.58/11.91/10.75	9.56/11.61/10.44
	N/A	25.05	16.17	N/A	12.16	11.36	10.75	10.54
ZQ-Global*	N/A	23.27/27.97/21.93	12.93/15.90/13.64	N/A	10.98/13.60/12.04	10.33/12.69/11.50	9.78/12.16/10.90	9.52/11.58/10.46
	N/A	24.39	16.18	N/A	12.21	11.50	10.95	10.52
BS $=512$								
RTN	N/A	25.05/29.74/23.21	15.71/19.05/16.09	13.67/16.93/14.23	11.32/14.22/12.50	10.45/12.99/11.68	10.03/12.27/11.03	9.83/12.15/10.67
	N/A	26.00	16.95	14.94	12.68	11.71	11.11	10.89
GPTQ	N/A	23.33/28.48/22.13	15.15/17.95/15.26	12.65/15.61/13.53	10.94/13.37/11.94	10.18/12.49/11.29	9.58/11.87/10.75	9.53/11.59/10.43
	N/A	24.65	16.12	13.93	12.08	11.32	10.73	10.52
ZQ-Global*	N/A	23.41/27.67/21.92	14.91/17.73/15.25	12.92/15.59/13.55	11.08/13.51/11.99	10.29/12.68/11.46	9.79/12.16/10.87	9.51/11.65/10.44
	N/A	24.34	15.97	14.02	12.19	11.48	10.94	10.53
$\mathrm{BS}=256$								
RTN	31.62/38.19/27.62	24.76/29.44/22.96	15.54/18.96/15.90	13.56/16.62/14.02	11.19/14.12/12.40	10.39/12.93/11.61	9.95/12.24/10.98	9.70/12.09/10.62
	32.48	25.72	16.80	14.73	12.57	11.64	11.06	10.80
GPTQ	30.56/37.20/26.68	23.37/28.33/21.97	14.95/17.63/15.16	12.59/15.60/13.49	10.93/13.29/11.92	10.15/12.43/11.27	9.58/11.91/10.74	9.49/11.60/10.40
	31.48	24.56	15.91	13.89	12.05	11.28	10.74	10.50
ZQ-Global*	30.45/35.35/26.24	23.06/27.72/21.74	14.93/17.45/15.15	12.99/15.47/13.50	10.96/13.45/12.00	10.25/12.61/11.43	9.73/12.14/10.89	9.49/11.58/10.42
	30.68	24.17	15.84	13.99	12.14	11.43	10.92	10.50
$\mathrm{BS}=128$								
RTN	30.62/36.67/27.10	24.12/29.34/22.70	15.35/18.52/15.66	13.19/16.24/13.88	11.11/13.94/12.28	10.31/12.82/11.54	9.93/12.12/10.93	9.56/11.85/10.56
	31.47	25.39	16.51	14.43	12.44	11.56	11.00	10.65
GPTQ	30.76/36.13/26.52	23.29/27.94/21.98	14.93/17.51/15.10	12.49/15.59/13.46	10.87/13.34/11.90	10.11/12.47/11.27	9.60/11.88/10.73	9.44/11.53/10.40
	31.14	24.40	15.85	13.85	12.03	11.28	10.74	10.45
ZQ-Global*	29.52/34.63/25.98	22.78/27.56/21.65	15.02/17.50/15.07	12.67/15.37/13.45	10.92/13.42/11.96	10.16/12.61/11.41	9.74/12.01/10.82	9.43/11.49/10.40
	30.04	23.99	15.86	13.83	12.10	11.39	10.86	10.44
$\mathrm{BS}=64$								
RTN	30.74/36.68/26.87	24.28/28.95/22.59	15.21/18.15/15.47	13.20/16.13/13.75	11.01/13.71/12.17	10.27/12.79/11.49	9.82/12.05/10.89	9.46/11.70/10.49
	31.43	25.27	16.28	14.36	12.30	11.52	10.92	10.55
GPTQ	30.25/35.72/26.43	23.39/27.55/21.75	14.81/17.40/15.06	12.54/15.54/13.44	10.87/13.29/11.89	10.09/12.44/11.27	9.55/11.89/10.72	9.33/11.49/10.38
	30.80	24.23	15.76	13.84	12.02	11.27	10.72	10.40
ZQ-Global*	29.69/34.24/25.72	22.94/27.49/21.54	14.90/17.43/15.01	12.80/15.47/13.44	10.92/13.33/11.93	10.21/12.58/11.38	9.69/12.01/10.81	9.41/11.49/10.39
	29.88	23.99	15.78	13.90	12.06	11.39	10.84	10.43
$\mathrm{BS}=32$								
RTN	30.48/36.32/26.64	23.88/28.66/22.36	14.99/17.87/15.32	12.89/16.00/13.67	10.89/13.70/12.13	10.32/12.73/11.45	9.76/12.00/10.85	9.56/11.55/10.44
	31.14	24.97	16.06	14.18	12.24	11.50	10.87	10.52
GPTQ	29.13/34.89/25.90	23.09/27.59/21.65	14.80/17.41/15.04	12.45/15.55/13.42	10.89/13.32/11.89	10.08/12.48/11.27	9.51/11.92/10.73	Diverge
	29.97	24.11	15.75	13.81	12.03	11.28	10.72	Diverge
ZQ-Global*	28.93/34.29/25.63	22.85/27.23/21.50	14.80/17.34/14.99	12.74/15.32/13.40	10.82/13.36/11.91	10.23/12.61/11.37	9.68/11.95/10.80	9.37/11.47/10.38
	29.62	23.86	15.71	13.82	12.03	11.41	10.81	10.41

Table D.16: BLOOM W4 ${ }^{\text {asym }}$-A16 with various block-size out of the best result from GPTQ and ZQ-Global. See Table 9.

Method	560 m	1.1 b	1.7 b	3b	7.1b	176b
$\mathrm{BS}=1024$						
RTN	24.90/46.37/26.68	N/A	16.57/30.14/19.00	N/A	1019.51/1351.45/601.35	$53.41 / 160.05 / 43.64$
	32.65	N/A	21.90	N/A	990.77	85.70
GPTQ	23.90/43.99/25.47	N/A	16.12/29.13/18.61	N/A	11.57/19.82/14.33	8.16/13.70/11.02
	31.12	N/A	21.29	N/A	15.24	10.96
ZQ-Global	23.62/43.90/25.41	N/A	15.98/28.67/18.44	N/A	11.91/20.84/14.58	8.23/13.94/11.09
	30.98	N/A	21.03	N/A	15.78	11.09
$\mathrm{BS}=512$						
RTN	24.78/46.07/26.45	19.41/53.64/21.85	16.47/29.84/18.88	14.29/24.84/17.05	142.38/314.10/100.09	$33.88 / 103.57 / 31.02$
	32.44	31.63	21.73	18.73	185.52	56.16
GPTQ	23.63/43.96/25.36	18.52/49.73/20.91	16.07/29.87/18.50	13.79/23.77/16.41	11.54/19.75/14.30	8.14/13.70/11.02
	30.98	29.72	21.48	17.99	15.20	10.95
ZQ-Global	23.50/43.53/25.23	18.31/49.06/20.82	15.93/28.47/18.38	13.82/23.92/16.47	11.85/20.17/14.42	8.20/13.86/11.07
	30.75	29.40	20.93	18.07	15.48	11.04
$\mathrm{BS}=256$						
RTN	24.09/45.13/26.02	18.87/52.29/21.44	16.27/29.72/18.76	14.16/24.42/16.90	121.09/281.67/88.59	12.55/27.29/15.60
	31.75	30.87	21.58	18.49	163.78	18.48
GPTQ	23.31/43.43/25.12	18.36/49.13/20.79	16.07/29.10/18.46	13.76/23.61/16.38	11.55/19.72/14.29	8.14/13.70/11.01
	30.62	29.42	21.21	17.92	15.18	10.95
ZQ-Global	23.17/43.16/25.13	18.24/48.78/20.75	15.81/28.71/18.32	$13.79 / 23.69 / 16.42$	11.59/19.92/14.36	8.17/13.80/11.06
	30.49	29.26	20.95	17.97	15.29	11.01
$\mathrm{BS}=128$						
RTN	23.82/44.78/25.75	18.62/51.31/21.17	16.13/29.89/18.66	14.00/24.19/16.71	23.90/49.80/24.15	8.84/15.62/11.70
	31.45	30.37	21.56	18.30	32.62	12.06
GPTQ	23.27/43.10/24.99	18.14/48.72/20.73	16.03/28.96/18.41	13.72/23.65/16.34	11.52/19.73/14.26	8.14/13.67/11.01
	30.45	29.20	21.13	17.90	15.17	10.94
ZQ-Global	23.14/42.95/24.97	18.17/48.53/20.70	15.75/28.71/18.29	13.73/23.65/16.37	11.56/19.77/14.32	8.17/13.78/11.03
	30.35	29.13	20.92	17.92	15.22	10.99
$\mathrm{BS}=64$						
RTN	23.65/44.04/25.51	18.53/50.02/21.03	16.06/29.57/18.60	13.93/23.95/16.60	11.85/20.51/14.65	$8.31 / 14.14 / 11.18$
	31.07	29.86	21.41	18.16	15.67	11.21
GPTQ	23.11/42.95/24.94	18.14/48.87/20.65	16.00/28.91/18.38	13.72/23.68/16.33	11.51/19.70/14.27	8.14/13.69/11.00
	30.33	29.22	21.10	17.91	15.16	10.94
ZQ-Global	23.00/42.80/24.91	18.10/48.30/20.64	15.68/28.55/18.25	13.70/23.63/16.36	11.53/19.67/14.27	$8.17 / 13.72 / 11.02$
	30.24	29.01	20.82	17.90	15.16	10.97
$\mathrm{BS}=32$						
RTN	23.60/43.91/25.50	18.63/50.13/21.04	15.98/29.56/18.56	13.92/23.90/16.53	11.65/20.01/14.43	8.20/13.86/11.07
	31.00	29.93	21.37	18.12	15.36	11.04
GPTQ	23.10/43.19/24.91	18.17/48.35/20.66	15.95/28.95/18.36	13.76/23.60/16.33	11.53/19.71/14.27	$8.14 / 13.70 / 11.00$
	30.40	29.06	21.08	17.89	15.17	10.95
ZQ-Global	$23.07 / 42.63 / 24.82$	18.07/48.07/20.59	15.66/28.58/18.21	13.72/23.59/16.33	11.52/19.71/14.26	$8.16 / 13.69 / 11.01$
	30.18	28.91	20.82	17.88	15.16	10.95

Table D.17: OPT full results of Table C.1.

Method	125m	350m	1.3b	2.7 b	6.7 b	13b	30b	66b
Full Row								
RTN	2095.20/1848.83/1222.00	47.43/53.38/36.93	4399.18/4400.98/3551.88	8326.78/4208.57/4895.83	878.00/735.86/910.10	1953.43/1953.60/1669.76	439.39/691.94/437.96	1465.06/1564.59/1282.58
	1722.01	45.91	4117.35	5810.40	841.32	1858.93	523.99	1437.41
GPTQ	845.81/599.71/496.14	30.65/34.09/26.15	20.23/27.39/19.45	15.91/19.26/16.01	12.69/15.90/13.96	11.36/13.71/12.21	10.10/12.54/11.20	16.77/21.16/15.39
	647.22	30.30	22.36	17.06	14.18	12.43	11.28	17.77
ZQ-Global ${ }^{*}$	46.47/58.55/35.45	29.64/36.51/25.55	32.48/94.57/28.97	60.91/116.22/36.45	23.87/29.75/23.88	44.70/60.78/46.18	13.16/20.49/13.48	28.93/75.91/27.28
	46.82	30.57	52.01	71.19	25.83	50.55	15.71	44.04
BS $=1024$								
RTN	N/A	44.57/49.58/35.09	1950.00/2317.55/1913.55	3810.79/2563.06/3054.91	50.01/70.17/99.21	265.62/417.03/261.93	362.47/252.33/364.45	523.81/846.60/1021.17
	N/A	43.08	2060.37	3142.92	73.13	314.86	326.42	797.20
GPTQ	N/A	29.78/33.76/25.66	19.03/23.32/18.14	N/A	11.69/14.31/12.70	10.56/12.96/11.70	9.89/12.19/11.02	12.84/16.17/13.02
	N/A	29.73	20.16	N/A	12.90	11.74	11.03	14.01
ZQ-Global ${ }^{*}$	N/A	29.19/34.57/25.11	19.83/29.77/19.79	N/A	13.99/18.82/14.76	13.43/19.28/13.76	11.10/14.46/11.94	11.87/14.86/12.13
	N/A	29.62	23.13	N/A	15.86	15.49	12.50	12.95
BS $=512$								
RTN	N/A	37.74/45.10/31.85	1777.53/1304.55/852.03	1604.07/1407.49/1487.78	25.13/40.56/40.08	130.75/175.33/135.67	620.53/340.68/416.28	198.01/457.78/426.15
	N/A	38.23	1311.37	1499.78	35.26	147.25	459.16	360.65
GPTQ	N/A	28.46/32.54/25.14	18.02/21.35/17.46	14.38/17.24/14.79	11.57/14.33/12.57	10.41/12.97/11.64	9.77/12.18/10.97	11.89/14.48/12.40
	N/A	28.71	18.94	15.47	12.82	11.67	10.97	12.92
ZQ-Global ${ }^{*}$	N/A	27.81/33.57/24.55	18.31/23.54/17.99	18.10/29.47/17.15	12.54/16.60/13.62	11.82/15.98/12.81	10.48/13.36/11.66	11.26/13.95/11.79
	N/A	28.65	19.95	21.57	14.25	13.54	11.83	12.33
BS $=256$								
RTN	4349.14/2907.61/2510.75	35.36/42.07/30.81	127.17/358.19/142.49	670.51/550.66/531.80	19.10/32.39/27.26	42.52/56.35/43.32	32.84/60.38/33.48	210.01/478.13/413.00
	3255.84	36.08	209.28	584.32	26.25	47.40	42.23	367.05
GPTQ	41.81/49.95/32.48	27.60/33.73/24.88	16.97/20.19/16.70	13.69/17.06/14.54	11.65/14.24/12.48	10.35/12.93/11.61	$9.66 / 12.10 / 10.93$	11.60/13.98/11.92
	41.41	28.74	17.95	15.10	12.79	11.63	10.90	12.50
ZQ-Global ${ }^{*}$	38.60/46.57/31.36	26.88/32.79/24.08	16.82/21.21/17.05	14.86/19.63/15.37	11.86/15.87/13.10	11.33/14.95/12.48	10.41/12.95/11.41	10.26/12.66/11.08
	38.85	27.92	18.36	16.62	13.61	12.92	11.59	11.34
$\mathrm{BS}=128$								
RTN	3446.89/2156.26/1484.15	33.13/41.23/29.51	49.40/88.45/45.07	153.68/155.21/113.98	16.34/26.86/21.98	17.80/25.95/18.28	45.83/43.91/57.50	106.84/241.02/212.94
	2362.43	34.62	60.97	140.96	21.72	20.67	49.08	186.93
GPTQ	40.00/45.73/31.15	27.68/34.04/25.18	16.47/19.90/16.47	13.81/16.96/14.37	11.57/14.10/12.41	10.35/12.84/11.58	9.73/12.08/10.91	10.96/13.27/11.45
	38.96	28.97	17.61	15.05	12.69	11.59	10.91	11.90
ZQ-Global*	36.57/43.88/29.94	25.75/31.59/23.57	16.28/20.20/16.67	14.27/18.41/14.90	11.70/15.05/12.68	11.13/15.07/12.17	10.31/12.99/11.32	10.12/12.66/11.01
	36.80	26.97	17.72	15.86	13.14	12.79	11.54	11.27
BS=64								
RTN	708.02/477.13/287.03	32.61/42.14/29.09	25.43/38.84/24.63	72.84/69.27/48.07	14.11/21.71/16.56	14.13/20.08/15.25	20.55/32.74/24.49	30.66/70.73/65.57
	490.73	34.61	29.63	63.39	17.46	16.48	25.93	55.65
GPTQ	37.15/42.59/30.07	27.68/33.55/25.12	16.25/19.80/16.32	13.66/16.69/14.37	11.42/13.98/12.37	10.37/12.90/11.58	9.68/12.17/10.92	10.39/12.65/11.15
	36.60	28.78	17.46	14.91	12.59	11.62	10.92	11.40
ZQ-Global ${ }^{*}$	35.82/40.98/29.65	25.31/31.60/23.38	16.05/19.77/16.39	13.33/16.92/14.31	11.56/14.70/12.59	10.88/13.64/12.04	10.04/12.70/11.27	10.04/12.06/10.81
	35.48	26.76	17.40	14.85	12.95	12.19	11.34	10.97
$\mathrm{BS}=32$								
RTN	72.83/88.62/54.25	32.36/40.76/29.06	20.22/27.31/19.81	31.12/42.01/26.83	13.38/18.56/15.44	13.06/18.35/14.38	11.12/15.05/12.35	19.29/43.61/34.10
	71.90	34.06	22.44	33.32	15.79	15.26	12.84	32.33
GPTQ	38.26/45.01/30.92	27.16/33.65/24.97	16.13/19.83/16.45	13.66/17.06/14.50	11.43/14.08/12.42	10.48/12.96/11.65	9.78/12.24/10.96	Diverge
	38.06	28.59	17.47	15.07	12.64	11.70	10.99	Diverge
ZQ-Global*	33.44/39.48/28.33	25.19/30.73/23.22	15.62/19.52/16.20	13.35/16.64/14.18	11.56/14.38/12.61	10.86/13.64/12.03	10.25/12.86/11.28	9.99/12.05/10.81
	33.75	26.38	17.11	14.73	12.85	12.17	11.46	10.95

Table D.18: BLOOM W3 ${ }^{\text {asym }}$-A16 with various block-size out of the best result from GPTQ and ZQ-Global. See Table C.2.

Method	560 m	1.1b	1.7b	3b	7.1b	176b
Full row						
RTN	68.45/132.83/59.22	118.61/317.41/99.65	31.15/67.23/34.02	31.07/59.03/32.17	66140.72/78568.16/44504.19	100371.84/166012.19/137892.34
	86.83	178.56	44.14	40.76	63071.02	134758.79
GPTQ	46.92/84.69/39.50	49.78/142.95/43.84	19.70/41.35/21.74	22.84/46.49/22.90	52966.59/52979.88/37115.48	Diverge
	57.04	78.85	27.59	30.74	47687.32	Diverge
ZQ-Global	$33.20 / 64.61 / 32.30$	$34.16 / 100.05 / 29.22$	19.22/36.30/21.25	18.41/33.10/20.79	273.55/439.59/100.79	27.19/75.74/45.45
	43.37	54.48	25.59	24.10	271.31	49.46
$\mathrm{BS}=1024$						
RTN	47.00/86.57/43.37	70.81/230.74/70.78	35.41/65.75/33.54	22.12/40.65/24.55	25654.77/25531.66/15868.46	141324.41/183583.73/200436.33
	58.98	124.11	44.90	29.11	22351.63	175114.82
GPTQ	$31.25 / 58.80 / 30.94$	N/A	19.11/37.07/20.90	N/A	12.59/21.95/15.21	8.31/13.96/11.17
	40.33	N/A	25.69	N/A	16.58	11.15
ZQ-Global	28.91/55.81/29.59	N/A	18.20/34.13/20.40	N/A	30.94/119.98/21.39	15.98/32.85/19.85
	38.10	N/A	24.24	N/A	57.44	22.89
$\mathrm{BS}=512$						
RTN	41.58/79.83/39.41	33.83/116.88/37.34	25.95/49.65/26.77	19.94/38.58/22.58	9777.49/8000.29/5407.46	202051.34/273707.81/279776.97
	53.61	62.68	34.12	27.03	7728.41	251845.38
GPTQ	28.08/53.15/29.05	21.20/61.42/23.33	18.41/34.47/20.43	15.08/26.14/17.53	12.32/21.29/15.01	8.30/13.98/11.16
	36.76	35.32	24.44	19.58	16.21	11.15
ZQ-Global	26.80/50.49/28.31	20.77/57.57/22.89	17.64/33.19/19.91	15.16/26.51/17.57	16.35/28.75/15.76	11.38/20.36/14.66
	35.20	33.75	23.58	19.75	20.29	15.47
$\mathrm{BS}=256$						
RTN	36.13/70.37/36.29	28.65/95.72/31.80	21.67/42.59/23.80	17.64/32.82/20.69	1322.61/1864.55/946.92	166006.80/187829.98/198052.83
	47.60	52.06	29.35	23.72	1378.02	183963.20
GPTQ	27.10/51.11/28.24	20.60/56.57/22.77	17.97/33.28/20.04	14.82/25.79/17.31	12.27/21.24/14.93	8.27/13.99/11.14
	35.48	33.31	23.76	19.31	16.15	11.13
ZQ-Global	25.96/49.75/27.59	20.21/54.83/22.33	17.43/32.14/19.67	14.85/25.79/17.33	12.85/22.00/15.04	9.07/15.88/11.88
	34.43	32.46	23.08	19.32	16.63	12.28
$\mathrm{BS}=128$						
RTN	$34.71 / 66.56 / 35.27$	24.43/73.77/26.90	19.59/37.22/21.98	16.11/28.81/18.89	108.32/252.15/74.42	111057.84/101926.99/105339.26
	45.51	41.70	26.26	21.27	144.96	106108.03
GPTQ	26.29/49.86/27.54	20.26/55.76/22.42	17.77/32.65/19.92	14.58/25.25/17.11	12.18/21.06/14.86	8.26/13.92/11.12
	34.56	32.81	23.45	18.98	16.03	11.10
ZQ-Global	25.28/48.24/26.96	19.79/54.04/22.03	17.12/31.42/19.31	14.62/25.73/17.17	12.04/21.02/14.82	8.43/14.44/11.29
	33.49	31.95	22.62	19.17	15.96	11.39
$\mathrm{BS}=64$						
RTN	30.88/59.01/32.08	23.04/67.93/25.49	19.35/37.67/21.80	15.64/27.56/18.39	37.15/65.22/33.22	198.66/488.11/128.62
	40.66	38.82	26.27	20.53	45.20	271.80
GPTQ	26.31/49.91/27.17	20.11/55.06/22.23	17.94/32.42/19.76	14.62/25.39/17.07	12.13/21.07/14.83	8.26/13.93/11.11
	34.46	32.47	23.37	19.02	16.01	11.10
ZQ-Global	25.17/48.01/26.59	19.51/53.27/21.75	16.88/31.14/19.22	14.51/25.18/17.05	12.00/20.85/14.74	$8.35 / 14.06 / 11.20$
	33.26	31.51	22.41	18.91	15.86	11.21
$\mathrm{BS}=32$						
RTN	$30.15 / 57.55 / 31.51$	23.49/70.15/25.56	18.96/36.54/21.42	15.56/27.48/18.32	13.06/23.77/16.05	10.28/18.90/13.27
	39.74	39.73	25.64	20.46	17.62	14.15
GPTQ	25.96/49.99/27.06	19.97/54.79/22.16	17.60/32.24/19.76	14.55/25.76/17.06	12.20/21.01/14.85	8.28/13.95/11.13
	34.33	32.31	23.20	19.12	16.02	11.12
ZQ-Global	25.09/47.36/26.34	19.43/52.95/21.64	16.86/30.49/19.11	14.50/25.36/16.99	12.00/20.84/14.72	$8.35 / 14.04 / 11.20$
	32.93	31.34	22.15	18.95	15.85	11.20

Table D.19: Full results of BLOOM-176B with different quantization bits

Bits	3	4	5	6	7	8
Per-row	$27.19 / 75.74 / 45.45$	$8.16 / 13.70 / 11.02$	$8.13 / 13.67 / 10.99$	$8.11 / 13.63 / 10.98$	$8.11 / 13.62 / 10.97$	$8.10 / 13.62 / 10.98$
1024	$8.31 / 13.96 / 11.17$	$8.14 / 13.70 / 11.02$	$8.11 / 13.62 / 10.97$	$8.11 / 13.62 / 10.97$	$8.11 / 13.63 / 10.97$	N/A
64	$8.26 / 13.93 / 11.11$	$8.14 / 13.69 / 11.00$	$8.11 / 13.62 / 10.96$	N/A	N/A	N/A

Table D.20: OPT full results of Table 11.

Method	125m	350 m	1.3b	2.7 b	6.7 b	13b	30b	66b
W $4^{\text {asym }}$ full row and $\mathrm{A} 8^{\text {sym }} 128$								
RTN	36.64/44.84/30.90	25.58/31.06/23.99	19.96/22.31/18.20	18.42/23.01/18.56	12.04/15.92/13.20	10.79/13.65/12.11	10.10/13.17/11.37	20.50/45.58/25.37
	37.46	26.88	20.16	20.00	13.72	12.18	11.54	30.48
GPTQ	31.82/38.82/27.54	23.78/28.96/22.61	15.56/18.27/15.62	13.02/15.88/13.76	11.22/13.59/12.11	10.25/12.65/11.37	9.56/11.94/10.79	9.62/11.72/10.54
	32.73	25.12	16.48	14.22	12.31	11.42	10.76	10.63
ZQ-Local								$\begin{gathered} 9.79 / 11.94 / 10.65 \\ 10.79 \end{gathered}$
ZQ-Global	31.69/36.66/27.19	23.47/28.18/22.03	15.53/18.35/15.73	13.02/16.11/13.82	11.29/13.70/12.19	10.43/12.91/11.64	9.86/12.28/11.00	9.62/11.84/10.63
	31.85	24.56	16.54	14.32	12.39	11.66	11.05	10.70
W4 $4^{\text {asym }} 128$ and A8 $8^{\text {sym }} 128$								
RTN	30.61/36.57/27.08	24.14/29.47/22.80	15.46/18.68/15.77	13.24/16.36/13.95	11.16/14.08/12.35	10.35/12.89/11.57	9.95/12.15/10.95	9.58/11.90/10.58
	31.42	25.47	16.64	14.52	12.53	11.60	11.02	10.69
GPTQ	30.47/36.45/26.45	23.43/28.12/22.06	14.90/17.62/15.17	12.51/15.63/13.48	10.88/13.35/11.93	10.17/12.48/11.28	9.58/11.86/10.74	9.35/11.54/10.40
	31.12	24.54	15.90	13.87	12.05	11.31	10.73	10.43
ZQ-Local								9.40/11.63/10.51
								10.51
ZQ-Global	29.59/34.68/25.91	22.59/27.93/21.68	14.87/17.55/15.11	12.65/15.45/13.48	10.88/13.40/11.94	10.20/12.67/11.43	9.74/12.03/10.83	9.40/11.51/10.42
	30.06	24.07	15.84	13.86	12.08	11.43	10.87	10.44
W $4^{\text {asym }}$ full row and A8 $8^{\text {asym }} 128$								
RTN	36.61/44.71/30.85	25.50/30.93/23.88	19.58/22.08/18.01	19.53/24.38/19.68	11.91/15.35/13.01	10.68/13.50/12.02	10.13/13.21/11.37	17.90/32.15/20.02
	37.39	26.77	19.89	21.20	13.42	12.07	11.57	23.36
GPTQ	32.15/39.58/27.65	23.48/28.92/22.46	15.43/18.24/15.55	12.92/15.94/13.74	11.17/13.59/12.09	10.35/12.63/11.36	9.65/11.95/10.79	9.58/11.71/10.55
	33.13	24.95	16.40	14.20	12.29	11.45	10.80	10.61
ZQ-Local								10.05/11.91/10.61
								10.86
ZQ-Global	31.55/37.49/27.25	23.34/28.33/22.08	15.52/18.55/15.61	13.07/16.09/13.82	11.32/13.65/12.16	10.42/12.86/11.63	9.86/12.30/11.00	9.67/12.22/10.86
	32.10	24.58	16.56	14.33	12.37	11.64	11.05	10.91
W $4^{\text {asym }} 128$ and $\mathrm{A}^{\text {asym }} 128$								
RTN	30.59/36.56/27.07	24.11/29.43/22.74	15.38/18.57/15.69	13.22/16.32/13.91	11.13/13.97/12.30	10.34/12.82/11.55	9.98/12.15/10.96	9.57/11.86/10.58
	31.41	25.43	16.55	14.49	12.47	11.57	11.03	10.67
GPTQ	30.47/36.19/26.40	23.35/27.96/21.94	14.92/17.57/15.12	12.48/15.60/13.46	10.87/13.34/11.91	10.20/12.45/11.28	9.62/11.88/10.74	9.39/11.55/10.41
	31.02	24.42	15.87	13.85	12.04	11.31	10.75	10.45
ZQ-Local								9.37/11.70/10.49
								10.52
ZQ-Global	29.85/34.52/26.10	22.70/27.72/21.64	14.96/17.55/15.09	12.64/15.40/13.47	10.93/13.43/11.95	10.18/12.68/11.42	9.74/12.02/10.83	9.39/11.53/10.42
	30.16	24.02	15.86	13.84	12.10	11.42	10.86	10.45

Table D.21: BLOOM full results of Table 12.

Method	560 m	1.1b	1.7 b	3b	7.1b	176b
W $4^{\text {asym }}$ full row and $\mathrm{A} 8^{\text {sym }} 128$						
RTN	$\begin{gathered} 25.32 / 46.98 / 27.12 \\ 33.14 \end{gathered}$	$\begin{gathered} 23.87 / 68.29 / 25.97 \\ 39.38 \end{gathered}$	$\begin{gathered} 16.99 / 31.15 / 19.51 \\ 22.55 \end{gathered}$	$\begin{gathered} 14.69 / 25.22 / 17.30 \\ 19.07 \end{gathered}$	$\begin{gathered} 12.07 / 20.86 / 14.84 \\ 15.92 \end{gathered}$	$\begin{gathered} 8.34 / 14.05 / 11.24 \\ 11.21 \end{gathered}$
GPTQ	$\begin{gathered} 24.00 / 44.47 / 25.66 \\ 31.37 \end{gathered}$	$\begin{gathered} 24.14 / 66.95 / 26.17 \\ 39.09 \end{gathered}$	$\begin{gathered} 16.38 / 29.64 / 18.79 \\ 21.61 \end{gathered}$	$\begin{gathered} 14.10 / 24.19 / 16.67 \\ 18.32 \end{gathered}$	$\begin{gathered} 11.77 / 20.22 / 14.48 \\ 15.49 \end{gathered}$	$\begin{gathered} 8.20 / 13.82 / 11.07 \\ 11.03 \end{gathered}$
ZQ-Local						$\begin{gathered} 8.30 / 14.01 / 11.20 \\ 11.17 \end{gathered}$
ZQ-Global	$\begin{gathered} 23.92 / 44.23 / 25.69 \\ 31.28 \end{gathered}$	$\begin{gathered} 22.53 / 57.71 / 23.51 \\ 34.58 \end{gathered}$	$\begin{gathered} 16.25 / 29.72 / 18.74 \\ 21.57 \end{gathered}$	$\begin{gathered} 14.12 / 24.26 / 16.74 \\ 18.38 \end{gathered}$	$\begin{gathered} 11.78 / 20.30 / 14.53 \\ 15.53 \end{gathered}$	$\begin{gathered} 8.24 / 13.82 / 11.10 \\ 11.05 \end{gathered}$
W $4^{\text {asym }} 128$ and $\mathrm{A} 8^{\text {sym }} 128$						
RTN	$\begin{gathered} 23.84 / 44.94 / 25.79 \\ 31.53 \end{gathered}$	$\begin{gathered} 18.65 / 51.54 / 21.21 \\ 30.46 \end{gathered}$	$\begin{gathered} 16.18 / 30.03 / 18.70 \\ 21.64 \end{gathered}$	$\begin{gathered} 14.04 / 24.32 / 16.77 \\ 18.38 \end{gathered}$	$\begin{gathered} 23.05 / 48.33 / 23.69 \\ 31.69 \end{gathered}$	$\begin{gathered} 8.87 / 15.68 / 11.72 \\ 12.09 \end{gathered}$
GPTQ	$\begin{gathered} 23.22 / 43.24 / 25.01 \\ 30.49 \end{gathered}$	$\begin{gathered} 18.25 / 48.89 / 20.74 \\ 29.29 \end{gathered}$	$\begin{gathered} 16.00 / 29.44 / 18.41 \\ 21.29 \end{gathered}$	$\begin{gathered} 13.77 / 23.68 / 16.35 \\ 17.93 \end{gathered}$	$\begin{gathered} 11.54 / 19.76 / 14.27 \\ 15.19 \end{gathered}$	$\begin{gathered} 8.13 / 13.69 / 11.01 \\ 10.95 \end{gathered}$
ZQ-Local						$\begin{gathered} 8.20 / 13.87 / 11.08 \\ 11.05 \end{gathered}$
ZQ-Global	$\begin{gathered} 23.12 / 43.22 / 25.03 \\ 30.45 \end{gathered}$	$\begin{gathered} 18.19 / 48.96 / 20.72 \\ 29.29 \end{gathered}$	$\begin{gathered} 15.75 / 28.81 / 18.30 \\ 20.95 \\ \hline \end{gathered}$	$\begin{gathered} 13.73 / 23.65 / 16.39 \\ 17.92 \end{gathered}$	$\begin{gathered} 11.57 / 19.85 / 14.32 \\ 15.25 \end{gathered}$	$\begin{gathered} 8.17 / 13.76 / 11.03 \\ 10.99 \\ \hline \end{gathered}$
W $4^{\text {asym }}$ full row and $\mathrm{A} 8^{\text {asym }} 128$						
RTN	$\begin{gathered} 25.30 / 46.87 / 27.10 \\ 33.09 \end{gathered}$	$\begin{gathered} 23.90 / 68.31 / 25.98 \\ 39.39 \end{gathered}$	$\begin{gathered} 16.96 / 31.09 / 19.48 \\ 22.51 \end{gathered}$	$\begin{gathered} 14.68 / 25.19 / 17.28 \\ 19.05 \end{gathered}$	$\begin{gathered} 12.07 / 20.86 / 14.84 \\ 15.92 \end{gathered}$	$\begin{gathered} 8.34 / 14.06 / 11.24 \\ 11.21 \end{gathered}$
GPTQ	$\begin{gathered} 23.97 / 44.15 / 25.62 \\ 31.24 \end{gathered}$	$\begin{gathered} 24.61 / 68.19 / 26.53 \\ 39.78 \end{gathered}$	$\begin{gathered} 16.36 / 29.77 / 18.81 \\ 21.65 \end{gathered}$	$\begin{gathered} 14.10 / 24.17 / 16.66 \\ 18.31 \end{gathered}$	$\begin{gathered} 11.78 / 20.32 / 14.49 \\ 15.53 \end{gathered}$	$\begin{gathered} 8.20 / 13.82 / 11.07 \\ 11.03 \end{gathered}$
ZQ-Local						$\begin{gathered} 8.32 / 13.97 / 11.20 \\ 11.16 \end{gathered}$
ZQ-Global	$\begin{gathered} 23.88 / 44.40 / 25.68 \\ 31.32 \end{gathered}$	$\begin{gathered} 22.63 / 57.91 / 23.39 \\ 34.64 \end{gathered}$	$\begin{gathered} 16.25 / 29.77 / 18.74 \\ 21.59 \end{gathered}$	$\begin{gathered} 14.17 / 24.24 / 16.74 \\ 18.38 \end{gathered}$	$\begin{gathered} 11.77 / 20.28 / 14.52 \\ 15.52 \end{gathered}$	$\begin{gathered} 8.25 / 13.82 / 11.10 \\ 11.06 \end{gathered}$
W4 ${ }^{\text {asym }} 128$ and $\mathrm{A}^{\text {asym }} 128$						
RTN	$\begin{gathered} 23.83 / 44.89 / 25.77 \\ 31.50 \end{gathered}$	$\begin{gathered} 18.63 / 51.46 / 21.19 \\ 30.43 \end{gathered}$	$\begin{gathered} 16.16 / 29.95 / 18.68 \\ 21.60 \end{gathered}$	$\begin{gathered} 14.03 / 24.27 / 16.75 \\ 18.35 \end{gathered}$	$\begin{gathered} 23.51 / 49.07 / 23.96 \\ 32.18 \end{gathered}$	$\begin{gathered} 8.85 / 15.65 / 11.72 \\ 12.08 \end{gathered}$
GPTQ	$\begin{gathered} 23.26 / 43.24 / 25.00 \\ 30.50 \end{gathered}$	$\begin{gathered} 18.18 / 48.84 / 20.73 \\ 29.25 \end{gathered}$	$\begin{gathered} 16.05 / 29.34 / 18.42 \\ 21.27 \end{gathered}$	$\begin{gathered} 13.69 / 23.56 / 16.34 \\ 17.86 \end{gathered}$	$\begin{gathered} 11.54 / 19.75 / 14.28 \\ 15.19 \end{gathered}$	$\begin{gathered} 8.14 / 13.71 / 11.02 \\ 10.96 \end{gathered}$
ZQ-Local						$\begin{gathered} 8.19 / 13.90 / 11.07 \\ 11.06 \end{gathered}$
ZQ-Global	$\begin{gathered} 23.12 / 43.14 / 25.01 \\ 30.42 \end{gathered}$	$\begin{gathered} 18.18 / 48.99 / 20.73 \\ 29.30 \end{gathered}$	$\begin{gathered} 15.71 / 28.73 / 18.30 \\ 20.91 \end{gathered}$	$\begin{gathered} 13.74 / 23.68 / 16.39 \\ 17.94 \end{gathered}$	$\begin{gathered} 11.56 / 19.85 / 14.31 \\ 15.24 \end{gathered}$	$\begin{gathered} 8.17 / 13.78 / 11.04 \\ 11.00 \end{gathered}$

Table D.22: Full results of Table 13.

Block SIze	1024	512	256	128	64	32
PPL	$8.16 / 13.75 / 11.04$	$8.15 / 13.75 / 11.02$	$8.15 / 13.70 / 11.01$	$8.13 / 13.69 / 11.01$	$8.14 / 13.69 / 11.01$	$8.14 / 13.69 / 11.01$

[^0]: ${ }^{1}$ The threshold is selected since when the model size is about doubled (e.g., 13 B vs. 30 B , and 30 B vs. 66 B), the PPL improvement is about 0.5 (see Table 2).

[^1]: ${ }^{2}$ [12] found that OPT-66B has a high ratio of dead neurons in the early layers, which may affect the compression ability. We also find another possible reason that the Layer Norm of OPT-family is not well trained (except OPT-350M): the weight and the bias are all 1's and 0's, respectively.

[^2]: ${ }^{3}$ The bias term (a.k.a., the zero point) can be simply fused into the previous activation quantization kernel [30].

[^3]: ${ }^{4}$ We also tried to freeze different components of the subnetwork, e.g., layer norm and/or bias, to see if we could get better results. However, they all exhibited similar performances.

