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Abstract

Improving the deployment efficiency of transformer-based language models has been challenging given
their high computation and memory cost. While INT8 quantization has recently been shown to be effective
in reducing both the memory cost and latency while preserving model accuracy, it remains unclear whether
we can leverage INT4 (which doubles peak hardware throughput) to achieve further latency improvement.
In this work, we fully investigate the feasibility of using INT4 quantization for language models, and show
that using INT4 introduces no or negligible accuracy degradation for encoder-only and encoder-decoder
models, but causes a significant accuracy drop for decoder-only models. To materialize the performance
gain using INT4, we develop a highly-optimized end-to-end INT4 encoder inference pipeline supporting
different quantization strategies. Our INT4 pipeline is 8.5× faster for latency-oriented scenarios and up to
3× for throughput-oriented scenarios compared to the inference of FP16, and improves the SOTA BERT
INT8 performance from FasterTransformer by up to 1.7×. We also provide insights into the failure cases
when applying INT4 to decoder-only models, and further explore the compatibility of INT4 quantization
with other compression techniques, like pruning and layer reduction.

1 Introduction
As pre-trained large language models (LLMs) (Vaswani et al., 2017) such as BERT (Tenney et al., 2019),
BART Lewis et al. (2020), and GPT (Radford et al., 2019) require a significant amount of GPU resources
to deploy, compression becomes a common practice to optimize model inference, especially for resource-
constrained environments. One of the widely used compression techniques is quantization where data are
stored and manipulated in a lower-precision format, such as 8-bit or 4-bit integers instead of 32-bit or 16-bit
floating-point numbers. It not only reduces the amount of memory required to store the model, but also
can leverage the higher GEMM computation throughput for lower-bit data types on supported GPUs (e.g.,
peak INT4 Tensor Core TFLOPS doubles that of INT8 and quadruples that of FP16) to improve inference
latency. Note that only quantizing the model weights without computing in lower-bit data types (i.e., keeping
activation in FP16 or FP32) introduces no latency improvement (or even slower due to type conversion at
runtime) but only memory saving.

Recent work proposes techniques to apply INT8 quantization (using INT8 computation where both
weight and activation are quantized, referred to as W8A8) to all linear layers without introducing accuracy
degradation for transformers (Yao et al., 2022; Xiao et al., 2022; Dettmers et al., 2022a,b; Li et al., 2022;
Kim et al., 2021). Yao et al. (2022) also present an INT8 inference pipeline and show good end-to-end (E2E)
performance improvement over FP16 model inference. NVIDIA’s FasterTransformer (NVIDIA, 2023) holds
SOTA open-source INT8 implementations where aggressive quantization are explored: mode-1 quantizes the
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attention computation beyond linear layers, and mode-2 further quantizes the residual connection trading off
accuracy for latency.

While we are advancing W8A8 quantization algorithms and implementations proven to be effective for
LLMs, the questions arise: (1) whether INT4 inference (using INT4 computation where both activation
and weight are quantized, referred to as W4A4) is feasible (acceptable accuracy drop) for these models,
and (2) how it can be leveraged for performance improvement on real hardware. Although W4A4 has been
successfully applied to other model types or hardware, e.g., convolution models for image classification with
quantization-aware training strategy (QAT) (Abdolrashidi et al., 2021),1 there is lack of work on exploring
W4A4 for LLMs inference on GPU. Dettmers and Zettlemoyer (2022) show little accuracy loss for LLMs when
only model weights are quantized to 4-bit with post-quantization training (PTQ)2, while the computation is
still in FP16 as the activations are not quantized. Wu et al. (2022) prove that even the binary network can
result in only a small degradation if applying QAT with knowledge distillation (KD) (Hinton et al., 2014)
and longer training, but the activations are quantized to INT8 (using INT8 computation, not INT4). Tang
et al. (2022) are the first to claim to apply W4A4 to BERT for inference with QAT and KD. However, their
quantization method fails to enable W4A4 for all but only the last two layers in a four-layer TinyBERT
model (otherwise causing drastic accuracy drops). Moreover, their E2E INT4 inference lacks implementation
details, with conflicting performance numbers when compared to FasterTransformer (see Appendix C.2).

In this work, we aim not only to better understand the accuracy impact of INT4 quantization on common
LLMs, but also to materialize and maximize the benefit of using INT4 computation in E2E inference, further
improving the SOTA inference performance on LLMs. Specifically, we make the following contributions:

• We explore the feasibility of W4A4 quantization across popular language model types, by leveraging the
recent layer-wise knowledge distillation method for quantization. We show that our W4A4 can achieve
no accuracy loss for the encoder-only models (BERT) on classification problems, negligible accuracy
difference for encoder-decoder models (BART) on summarization tasks, but causes a relatively larger
accuracy drop for decoder-only models (GPT) on autoregressive generation tasks.

• We develop a highly optimized end-to-end encoder model inference pipeline to support INT4 computa-
tion. The pipeline is built with modular components supporting different quantization strategies to
accommodate latency- or throughput-oriented scenarios. Our inference pipeline is up to 8.5×/3× faster
for latency-/throughput-oriented scenarios when compared to HuggingFace FP16 BERT implementation,
and improves the SOTA BERT INT8 performance from NVIDIA FasterTransformer by up to 1.7×.

• To unveil the causes of larger accuracy drop for decoder-only models (GPT) when using INT4 quantiza-
tion, we provide an in-depth analysis of layer normalization, pretraining effect, and attention mechanism.
Additionally, we study the composability of INT4 quantization with other compression techniques,
including pruning and layer-reduction, for encoder-related models.

We defer additional related work to Appendix A.

2 Model Accuracy for INT4 Quantization

2.1 Quantization Algorithms and Training
Quantization. For completeness, we here explain the symmetric and asymmetric quantization algo-
rithms (Yao et al., 2022). Suppose x ∈ Rd and xq ∈ Rd represent respectively a full-precision and a
quantized vector. The uniform symmetric mapping strategy from x and xint is

x(sym)
q = S

⌈
clamp(x/S;−2b−1, 2b−1 − 1)

⌉
,

1QAT requires the full training pipeline by quantizing the weight and activation during the forward process and updating the
weights with gradients computed by straight through estimator (Bengio et al., 2013) or other methods.

2PTQ means the quantized model is arrived directly by mapping the weights from floating-point to low precision values
without the full pipeline training (dataset and backward gradient).
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where clamp restricts the value of its argument to a given range from −2b−1 to 2b−1 − 1, b is the number of
bits used to represent the quantized value, d·e is the rounding operator, and S ∈ R is the scaling factor. For
example, S can be computed as the maximum of the absolute elements in the x vector, i.e., S = max (abs(x)).
On the other hand, the asymmetric mapping strategy can be expressed as

x(asym)
q = S

⌈
clamp((x− xzero1)/S; 0, 2

b−1 − 1)
⌉
+ xzero1,

where xzero is used as a reference point potentially reducing any bias into the asymmetric vector. The scalar
S can be computed as S = max(x)−min(x) and xzero = min(x).

Throughout the paper, we always do both weight and activation quantization using the method proposed
in Yao et al. (2022). See Appendix B for more details.

Knowledge Distillation. Knowledge distillation (KD) can greatly improve the performance of quantized
transformer models. It trains a smaller quantized model (the student model) by incorporating the knowledge
from the larger full-precision model (the teacher model). This can be done by training the student model to
mimic the behavior of the teacher model on the training dataset, using the output probabilities as a soft
target (Hinton et al., 2014) and the hidden states (and/or attention maps) of each transformer layer to align
feature maps (Jiao et al., 2019; Wang et al., 2020; Bai et al., 2020; Li et al., 2016a; Wu et al., 2022).

Table 1: The best quality for BERT/BART/GPT-type models (two sizes) over the validation datasets,
respectively with metric Accuracy (Acc., higher is better), Rouge Lsum (RLsum, higher is better), and
perplexity (PPL, lower is better).

Models BERT-base (110M) BART-base (140M) GPT2-base (117M)
Tasks MNLI-m/mm QQP CNNDailyMail XSUM PTB WIKI-2 WIKI-103
Metrics Acc/Acc F1/Acc R1/R2/RLsum R1/R2/RL Perplexity Perplexity Perplexity

FP32 (teacher) 84.20/84.67 87.83/90.95 45.62/22.85/42.87 42.18/19.44/34.36 19.31 21.02 17.46
W4A4 (symmetric) 84.31/84.48 88.11/91.14 44.63/21.42/41.92 41.54/18.61/33.69 22.17 27.28 21.75
W4A4 (asymmetric) 84.29/84.65 88.17/91.19 44.83/21.67/42.08 41.53/18.56/33.62 21.72 25.99 21.54

Models BERT-large (345M) BART-large (406M) GPT2-medium (355M)
Tasks MNLI-m/mm QQP CNNDailyMail XSUM PTB WIKI-2 WIKI-103
Metrics Acc/Acc F1/Acc R1/R2/RLsum R1/R2/RL Perplexity Perplexity Perplexity

FP32 (teacher) 86.65/85.91 88.08/91.07 44.82/21.67/41.80 45.42/22.37/37.29 15.92 15.92 12.75
W4A4 (symmetric) 86.25/86.20 88.30/91.17 45.12/21.73/42.31 44.39/21.28/36.33 17.69 19.51 14.57
W4A4 (asymmetric) 86.49/86.28 88.35/91.24 45.20/21.85/42.40 44.91/21.74/36.79 17.32 18.74 14.23

2.2 INT4 Quantization for Language Models
We perform the 4-bit quantization on all linear layers using QAT and KD. We use BERT-base and BERT-large
(Tenney et al., 2019) as representatives for encoder-only models and fine-tune them on two largest GLUE
tasks, i.e., QQP (Iyer et al., 2017) and MNLI (Williams et al., 2017) for small accuracy variations. We use
GPT2 and GPT2-medium (Radford et al., 2019) as representatives for decoder-only models and fine-tune
them on three causal generation tasks, i.e., PTB (Marcinkiewicz, 1994), Wikitext-2, and Wikitext-103 (Merity
et al., 2017). Finally, we use BART-base and BART-large as representatives for encoder-decoder models and
fine-tune them on two summarization tasks, i.e., CNNDaiyMail (Hermann et al., 2015), and XSum (Narayan
et al., 2018). In order to reduce the hyper-parameters’ effect, e.g., the best quantization configuration for
BERT may be suboptimal for GPT, we exhaustively search hyper-parameters including iterations, learning
rate, dropout, quantization groups, clip values, and knowledge distillation terms for each model and choose
the best one to report here. We include the experimental details in Appendix C and Table C.1.

We present the main results in Table 1 for both symmetric and asymmetric quantizations. We also
provide more detailed iterative-vs-accuracy plots in Figure C.1 on the validation datasets for QAT. For
symmetric quantization, as can be seen, there is no accuracy degradation for BERT models and negligible
drops (≤ 1 point) for BART models, while the 4-bit decoder models, i.e., GPT2 and GPT2-medium, show
a significant drop in perplexity (≥ 1.5 points) compared to the original FP32 models. This suggests that
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Figure 1: CUTLASS INT4 vs. INT8 GEMM performance comparison across different batch size×sequence
length (M) for BERT-base and BERT-large GEMM shapes (N and K). We use the best GEMM schedule for
different inputs identified with the CUTLASS profiler. Left axis shows the throughput achieved (Peak INT8
and INT4 Tensor TOPS is 309.7 and 619.3 TFLOPS on A6000 GPU) and the right axis shows the speedup
of INT4 over INT8.

classification/summarization tasks using encoder-only/encoder-decoder models are much more robust to
quantization when compared to auto-regressive generation tasks using decoder-only models.

Asymmetric quantization generally improves the accuracy performance over symmetric quantization since
it better utilizes the quantization range. One notable thing is that even with a better quantization scheme
(i.e., asymmetric quantization) and exhaustive hyper-parameter tuning, decoder-only models still have larger
quality degradation compared to encoder-only and encoder-decoder models. To provide more insight into
why decoder-only models are more sensitive to INT4 quantization, we give a detailed analysis in Section 4.

3 Highly Optimized INT4 Encoder Inference
To materialize and maximize the benefits of using INT4 computation in model inference, we develop a set of
custom GPU kernels and an E2E highly optimized pipeline to support inference with INT4 (as well as INT8)
quantized encoder models. We adopt the system optimizations described in (Yao et al., 2022) and (Aminabadi
et al., 2022) when applicable, and take advantage of FlashAttention (Dao et al., 2022) and the CUDA
graph (NVIDIA, 2021) to further improve the performance. Moreover, we explore different quantization
strategies for latency- or throughput-oriented scenarios. The software design and implementation also largely
apply to other model types, e.g., GPT decoders if the accuracy drop can be resolved.

We conduct the performance experiments on a Lambda A6000 workstation Lambda (2023) (2×A6000-
48GB-GPU, 256GB DRAM, and 2TB NVME), with the following software setup: HuggingFace transformers
4.25.1, NVIDIA FasterTransformer v5.2.1, PyTorch: 1.12.1, cuda 11.7, and cutlass v2.6.0. Currently, INT4
GEMM is not supported by CUBLAS, and is only available through CUTLASS (NVIDIA, 2017) and we use
that to support the INT4 computation in model inference.

3.1 INT4 GEMM
INT4 Tensor Core performance (peak TFLOPS) theoretically doubles INT8 throughput on supported NVIDIA
GPUs. However, to achieve the 2× speedup, the GEMM input shapes have to be large enough (being compute-
intensive). The linear layers that are quantized and computed with INT4 data in the encoder model inference
are QKV projection, attention output, MLP intermediate, and MLP output GEMM. The GEMM shapes
(M-N-K) for these layers are (bs× seq−3h−h), (bs× seq−h−h), (bs× seq−4h−h) and (bs× seq−h−4h)
respectively, where bs and seq are input batch size and sequence length, and h is the model hidden dimension.
These shapes set the upper-bound performance improvement we can achieve with INT4 over INT8 GEMM
for a given model.
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Figure 1 shows the performance comparison between INT4 and INT8 GEMM for common shapes in
BERT-base and BERT-large model. We can see that the larger the input shape, the higher the speedup.
While the INT4 GEMM speedup for BERT-large are overall higher than BERT-base as the model hidden
dimension is larger (1024 vs. 768), within a model the four GEMM can have very different achieved INT4
speedup given the same input, i.e., bs × seq. For example, with bs × seq = 12288 for BERT-large, the
attention output GEMM (12288-h-h) only achieves 1.46× speedup while the MLP output GEMM (12288-h-4h)
achieves 1.96× when using INT4 over INT8 computation. Combining with the quantization/dequantization
overhead (see Section 3.2), this difference suggests the need for tunable quantization strategies (enable/disable
quantization on certain GEMM parts) depending on the input shape.

3.2 Holistic Optimizations of End-to-end Inference

(a) (b)

Figure 2: E2E latency speedup of (a) our INT4 over INT8 with all four parts quantized (i4-qall and i8-qall),
and (b) our INT4 with best quantization strategy (i4-qbest) over Fastertransformer INT8 (FT-i8) on A6000.

Figure 3: E2E latency speedup of FasterTransformer INT8 (FT-i8), our IN8 with all quantization (q=i8-qall),
and our INT4 with best quantization strategy (i4-qbest) over HuggingFace FP16 (HF-fp16) inference.

While INT4 computation introduces performance improvement for the linear layers, there are other major
components in between using FP16 data types (e.g., layer normalization, elementwise operations, etc.). The
E2E inference requires quantizing/dequantizating the activations before/after the lower-bit GEMM operations.
Moreover, the improvement from INT4 and the quantization/dequantization overhead are both model- and
input-dependent. Depending on the deployment scenarios (latency- or throughput-oriented), the optimal
quantization strategies can be different. Thus, maximizing the gain from using INT4 computation requires
holistic optimizations of the E2E model inference.

The quantization/dequantization of activations are memory-bound operations and introduce nontrivial
overhead. Similar to Yao et al. (2022), we fuse the quantization operation for activation with its previous
element-bias-add, GELU, or layer normalization operation into a single GPU kernel; and fuse the dequantiza-
tion operation with the INT4 GEMM kernel to avoid extra data movement to global GPU memory. Since
the current PyTorch does not support the INT4 tensor data type yet, we pack INT4 data into INT8 tensors
when invoking our customized kernels.
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FlashAttention (Dao et al., 2022) has been shown to largely improve the attention computation performance,
especially for large batch sizes and sequence lengths. We integrate FlashAttention into our inference pipeline
to speed up the attention computation (in FP16). CUDA graph (NVIDIA, 2021) was introduced by NVIDIA
to reduce GPU kernel launching overhead. For small batch sizes and short sequence lengths, the kernel
launching overhead is non-negligible, thus we enable CUDA graph in our inference pipeline to minimize such
overhead.

A model deployment scenario can be either latency-sensitive or throughput-oriented, thus different batch
sizes and sequence lengths are used for different cases. As shown in Section 3.1, the gain from INT4 is input
(decides GEMM shapes) dependent. The memory-bound quantization/dequantization operations introduce
input-dependent (i.e., the size of activations) overhead as well. Due to the various model sizes (particularly
the hidden dimension, h), input shapes, and hardwares, the four linear layers for quantization have different
trade-offs between the gain and overhead. For example, for low bs × seq inference with BERT models,
quantization of QKV projection, attention output, and MLP output might not result in E2E performance
improvement. If so, we can skip the quantization of these three parts in inference (note that using a higher-bit
computation data type for a QAT model does not degrade the inference accuracy).

As such, we develop the four model parts as modular components where quantization can be enabled or
disabled separately in the inference pipeline. Different quantization strategies can be applied given a target
scenario and hardware. Also, the GEMM schedules used in inference are pre-tuned (with CUTLASS profiler)
for the best performance in the deployment environment as well.

3.3 End-to-end Inference Performance Results
We measure the E2E BERT model INT4 (prefixed with i4-) and INT8 (prefixed with i8-) latency with our
inference pipeline and compare it with the HuggingFace FP16 implementation (noted as HF-fp16 ) as well as
the SOTA INT8 implementation (noted as FT-i8 ) from NVIDIA FasterTransformer (NVIDIA, 2023). The
input batch size and sequence length are selected to cover both latency- and throughput-oriented scenarios.
We explore different quantization strategies (suffix in name to note what is quantized) with the inference
pipeline and show the effectiveness of such tuning. We use symmetric quantization for the BERT models in
the experiments as the earlier section shows no accuracy drop and it is faster than asymmetric quantization
because of less required computation for bias term.

Figure 2a shows the E2E speedup of our INT4 over our INT8 inference when quantizing all four parts.
Cross-comparing it with Figure 1 which indicates the upper bound of the E2E INT4-vs-INT8 speedup, we
can see that the inference pipeline design achieves well the goal of maximizing the performance gain from
using INT4 computation. Figure 2b compares our best INT4 inference with the Fastertansformer INT8
(using mode-1 as model-2 trades off accuracy for better latency) inference. Note that other than the four
parts we quantize in our pipeline, Fastertansformer INT8 also quantizes attention computation while we use
FP16 FlashAttention (see Section 3.2). As annotated, the best quantization strategy for (bs− seq) (1-32),
(1-128) and (8-32) is to only quantize the MLP intermediate GEMM (q3). For larger batch sizes and sequence
lengths, the best configuration is to quantize all four parts. We show that our highly-optimized INT4 inference
improves the SOTA BERT model performance by up to 1.7× as compared to FP-INT8, while model quality
maintains.

Figure 3 presents the speedup of our inference and FasterTransformer pipelines over HuggingFace FP16
inference, a common baseline for comparison. Our INT4 inference is up to 8.5× faster for latency-oriented
scenarios and up to 3× for throughput-oriented scenarios. Note that we focus on maximizing the performance
gain from using INT4 computation in this work, thus orthogonal optimizations from FasterTransformer (e.g.,
padding removal) or other work are applicable to our INT4 inference design, and can further improve the
inference performance.
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4 Failure Cases: Understanding the Quality Degradation of INT4
Decoder Models

For W4A4 GPT models, we have made heavy efforts to tune and distill but their results are still far away
from the FP32 counterparts. In this section, we present several analyses of the causes of such degradation,
including

(1) Layer Normalization (LN). The position of LN is different for encoder and decoder models: LN
for BERT and BART happens after each sublayer’s residual connection (“Post-LN") (Vaswani et al., 2017),
while LN for GPT models operates at the beginning of each sublayer before adding to the residual values
(“Pre-LN") (Xiong et al., 2020). Compared to Pre-LN, Post-LN removes the mean and variance shift caused
by the residual connection and activation functions, which might make the network more robust. A possible
conjecture is that the good quality of INT4 BERT/BART is due to the effect of Post-LN, which thus leads
the models to less sensitivity to quantization.

(2) Pretraining Effect. The activation range for decoder models can vary significantly for different
layers and for different linear modules. A possible conjecture that pretraining with a dataset of a large scale,
such as billions of examples, may exacerbate this issue by introducing more diversity in the input activations,
which could lead to less optimal quantization performance.

(3) Attention Mechanism. GPT models use casual-self-attention mechanism to weight the importance
of each word in the input and generate tokens in a sequential manner (autoregressive generation), while BART
uses encoder-decoder attention mechanism plus casual-self-attention. As such, for the first few generated
tokens, BART can still gather information from the encoder-decoder attention which can potentially reduce
the quantization error by averaging attention information, while GPT does not have this ability.
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Figure 4: The quality gaps between W4A4 and FP32 models, respectively for GPT2-PreLN (blue) and
GPT2-PostLN (orange).

Layer Normalization. To understand if pre-LN and post-LN lead to a significant difference on the
quantization, we design the following experiments:
(1) As GPT2 is by default using Pre-LN (GPT2-PreLN), we construct a model (GPT2-PostLN) by replacing
the pre-LN with post-LN. In order to have a fair comparison between the quantization results of GPT2-PreLN
and GPT2-PostLN, we directly fine-tune both models on Wikitext-103 from scratch, and the perplexities
are 17.88 (PreLN) and 18.95 (PostLN) for GPT2-Medium, and 18.76 (PreLN) and 19.46 (PostLN) for
GPT2-base.3

3Compared to Wikitext-2 and PTB, Wikitext-103 is a considerable larger dataset and thus arrived at a low perplexity even
from scratch, closer to results of the pretrained ones.
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(2) We take the above FP32 checkpoints and apply QAT with KD to obtain the best W4A4 models. The the
perplexities for W4A4 are 18.66 (PreLN) and 19.79 (PostLN) for GPT2-Medium, and 20.46 (PreLN) and
21.73 (PostLN) for GPT2-base. We then calculate the perplexity gaps between the W4A4 and FP32 models.

We report the results in Figure 4 of the two perplexity-gap curves for W4A4 and FP32 models, depicted
by the blue curve of GPT2-PreLN and orange curve of GPT2-PostLN. The overlap phenomenon at the end
of the training, respectively, demonstrates that LN may not directly affect the performance degradation for
decoder-only models..

Pretraining Effect. Despite obtaining negative results on the position of layer normalization, we have
identified an intriguing observation in regard to models trained from scratch. Our experiments reveal that
the gap between the student and teacher models in terms of perplexity (PPL) is smaller when training from
scratch (20.46 ppl and 18.76 ppl for INT4 and FP32, respectively) as compared to utilizing a pretrained
GPT2 model (21.54 ppl for INT4 and 17.46 for FP32). This observation raises questions about the potential
negative effort of pretraining in the context of quantization, as the model trained from scratch appears to
perform better.
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Figure 5: The gaps between the minimum and maximum activations at certain layers (Layer 1, 5, 9, and 12)
in the second fully-connected linear module. The gaps are plotted with respect to position and the average is
being taken over 8 batch sizes, with one standard deviation shaded region.

To understand this, we compare the position-wise activation range between the fined-tuned models from
pretrained checkpoint and from scratch (referred to as “positional activation"). This provides a token-level
understanding on the quantization range. The results are shown in Figure 5 and it reveals the higher
positional-activation range of the pretrained model as compared to the scratch-trained model. This further
supports the hypothesis that pretraining on large diverse datasets may lead to a wider range of activation
values, and thus may be suboptimal for quantization as compared to models trained from scratch.

Attention Mechanism. To gain insight into the impact of different attention mechanisms (encoder-decoder
attention and causal-self-attention) on quantization errors, we conduct a comparison of BART-large and
GPT2-medium models. We evaluate the “positional perplexity" of both FP32 and W4A4 models on the
CNNDailyMail dataset for BART and Wikitext-2 dataset for GPT. The results are depicted in Figure 6. We
make the following observations:
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Figure 6: The positional perplexity across the full sequence for BART and GPT2 models.

(1) The curves for GPT, whether it is the teacher or student model, tends to exhibit a downward trend.
The token losses at early positions are significantly higher than those at later positions. Conversely, the
curves for both the teacher and student models of BART exhibit a mild upward trend, with token losses at
later positions being no better than those at earlier positions.

(2) The perplexity degradation from quantization for the BART model is small, with a maximum gap
of 2.5 ppl at the end of the sequence. In contrast, the GPT model experiences large accuracy loss from
quantization, with a maximum gap of over 100 ppl at the first tens of tokens of the sequence and around 2
ppl gap at later.

Both phenomena highlight the importance of the additional encoder-decoder attention mechanism. For
causal-self-attention-only models (i.e., GPT), the next-generated token can only use the information from
previous word. As such, (1) the earlier positions have less information to retrieve, which leads to larger ppl
scores; (2) the INT4 model has significant perplexity degradation at the beginning positions compared to
FP32 model due to the information noise from quantization. Thanks to the encoder-decoder attention, INT4
BART model has relatively (1) stable perplexity for all positions and (2) consistent the positional perplexity
degradation as compared to FP32 counterpart.

5 Composability of INT4 Quantization
In this section, we examine the composability of W4A4 to identify techniques that can be used to further
accelerate INT4 inference. Specifically, we investigate the potential of combining INT4 quantization with
other compression techniques, such as pruning and layer reduction. Our study is based on the observation
that encoder-related models, such as BERT and BART, demonstrate robustness to W4A4 compression as
shown in Table 1.

5.1 Composing Semi-structured Pruning with INT4
We focus on combining semi-structured pruning with W4A4. Specifically, we investigate the semi-structured
sparsity called Pair-(N:M) which allows for accelerated execution on NVIDIA Ampere GPUs (Mishra et al.,
2021; Holmes et al., 2022). Pair-(N:M) sparsity structure means that there are N zero-entries for every M
elements. We take BERT-base as an example, as Quantization-Aware Training with Knowledge Distillation
for W4A4 models has been shown to lead to better accuracy than its FP32 counterpart. We follow the
training recipe described in Wu et al. (2022).
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Figure 7: The validation accuracy (Val. Acc.) of the W4A4+50% sparsity (i.e., Pair-(2:4)) BERT-base.
We compare the order of pruning and quantization. Q=>P (orange solid curve) means the quantization
algorithm is in front of the pruning algorithm. P=>Q (blue dash curve) is the opposite. From left to right
plots, the difference is the training epochs (see title).

Algorithm Design Order between Pruning and INT4. When combining the two compression
techniques pruning and quantization, a natural question would be the ordering in the forward pass of the
two: should we put quantization in front of pruning (e.g. Quant(Prune(W) or P=>Q), or vice versa (e.g.
Prune(Quant(W) or Q=>P). To understand this, we fine-tune on MNLI with different training epochs using
simplest `1 pruning method (Han et al., 2015, 2016). `1 pruning method prunes those small absolute value to
be zero while keeping those large weight value untouched. The `1 pruning mask is determined by the absolute
value of the weight matrix of the teacher models and it remains fixed throughout the training.

We plot the accuracy on the validation dataset in Figure 7. As can be seen, for shorter training time,
P=>Q is better that Q=>P. However, the benefits of P=>Q start to diminish as we increase the training
epochs. Overall, it is generally recommended to perform pruning before quantization, because pruning
removes unnecessary weights from the model. As such, it can help mitigate the loss of precision caused by
quantization and make the quantization process more effective.

With the decision to use the pruning-quantization order, we trained an INT4 BERT-base model with both
50% and 75% sparsity and reported the best validation results in Table 2. We found that a 75% sparsity level
results in an accuracy drop of 0.79/1.6 for the MNLI-m/mm tasks. Therefore, if maintaining high accuracy is
a priority, using a 50% sparsity level for W4A4 models is recommended. In the appendix, we also present the
results of applying 50% sparsity to W4A4 models for 8 GLUE tasks and confirm that the average GLUE
scores are similar to those of the original FP32 models.

Table 2: Quantization (Q) and Pruning (P) for 50% or 75% sparsity.

Tasks Teacher Epoch-3 Epoch-21: P+Q
MNLI- FP32 Q only 50% sparisty 75% sparisty

m/mm 84.9/85.6 84.8/85.2 84.56/85.04 84.11/83.99

5.2 Composing Layer-reduction with Quantization
Reducing the depth of a model, also known as layer-reduction, is a more straightforward method to improve
inference latency as it requires no modifications to the single-layer implementation (e.g. GPU kernels).
However, it should be noted that these layer-reduced models may not be able to capture the same level
of complexity or learn the same representations as the original models. To understand the compatibility
of layer-reduction and quantization as well as the trade-off between model depth and quality, we perform
detailed study on an encoder-decoder model.
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Our implementation of layer-reduction strategies and fine-tuning recipes follows the work in Li et al.
(2022)4. However, there are two key differences: (1) Our quantization algorithm, described in Section 2.1,
differs from the one used in Li et al. (2022).5 (2) While Li et al. (2022) uses 8-bit activations, we trained our
model with 4-bit activations.

More Encoder or More Decoder? When applying layer-reduction for encoder-decoder model, we
need to decide the number of encoder and decoder layers. For example, when the depth is fixed at four layers,
should we have more encoder layers (3-encoder and 1-decoder), more decoder layers (1-encoder and 3-decoder),
or an equal number of layers for both (2-encoder and 2-decoder)? We investigate different scenarios of
x-encoder and y-decoder layers, where x + y ∈ {9, 7} and x ∈ {6, 5, 4, 3} for the case of x + y = 9, and
x ∈ {3, 2, 1} for the case of x+ y = 4. We train our models for 10 epochs with a fixed random seed and a
learning rate of 5e-5.

The results are reported in Table 3. A comparison of the results within the same depth (i.e., 9, 7, and
4) reveals that it is beneficial to have more encoder layers than decoder layers, and that the decoder layers
should be greater than one. Particularly, our experiments demonstrate that the performance of a 9-layer
W4A4 BART model (with 6 encoder layers and 3 decoder layers) can be maintained at an acceptable level,
which is only 0.6 lower than the 12-layer INT4 on the CNNDailyMail dataset. This represents a potential
latency improvement of about 50% for the decoder part while experiencing a minor accuracy drop.

Table 3: The W4A4 model with layer-reduction. For references, the original W4A4 BART-base (6-encoder
and 6-decoder) on CNNDailyMail and XSUM are respectively 44.83/21.67/42.08 and 41.53/18.56/33.62.

Encoder (Decoder) Six (Three) Five (Four) Four (Five) Three (Six) Four (Four)
CNNDailyMail 44.23/21.07/41.58 44.15/21.02/41.45 43.96/20.9/41.26 43.59/20.44/40.82 43.77/20.61/41.09
XSUM 40.61/17.83/32.90 40.30/17.53/32.61 40.18/17.47/32.43 39.30/16.76/31.64 39.75/17.10/32.06
Encoder (Decoder) Six (One) Five (Two) Four (Three) Three (Four) Three (Three)
CNNDailyMail 42.48/19.83/40.13 43.55/20.56/40.99 43.48/20.38/40.85 43.29/20.14/40.54 42.90/19.85/40.21
XSUM 38.23/16.45/31.49 39.52/17.03/31.98 39.43/16.89/31.80 38.86/16.46/31.31 38.22/15.91/30.63
Encoder (Decoder) Three (One) Two (Two) One (Three)
CNNDailyMail 41.26/18.58/38.93 41.83/18.82/39.20 41.40/18.39/38.68
XSUM 35.88/14.71/29.34 36.09/14.39/29.01 34.69/13.22/27.64

Summary. We demonstrate that it is possible to combine INT4 quantization with other compression
techniques, like composing INT4 and 50% Ampere-structure sparisty with aronund 0.5 GLUE points
degradation and composing INT4 and 25% layer reduction without causing much degradation on summarization
tasks. Fully investing the composability of quantization and other methods is beyond the scope of our paper
and we leave it as future work.

6 Conclusions
Improving the inference efficiency of language models has been increasingly critical given their growing
adoption but high compute resource requirements. While quantization techniques enabling INT8 computation
on these language models have been well explored recently, how to fully unlock the INT4 computation power
of GPU is an emerging and unanswered question. In this work, we thoroughly investigate the feasibility of
applying INT4 quantization to language models, and our INT4 encoder inference pipeline shows an up to
1.7× latency improvement over SOTA INT8 inference. We also provide an in-depth analysis of the accuracy
drop for decoder models when using INT4 quantization, and study the composability of INT4 quantization
for encoder-related model with other compression techniques.

4https://github.com/amazon-science/dq-bart
5We did a comparison of the two quantization algorithms and found that the algorithm for INT4 presented in Section 2.1 has

better accuracy than that in Li et al. (2022)
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A Related Work
Model compression, as a technique to reduce to the model size and computation costs, can be achieved by
pruning, quantization, low-rank factorization and efficient architecture designs (Han et al., 2015; Li et al.,
2016b; Mao et al., 2017; LeCun et al., 1990; Michel et al., 2019; Fan et al., 2019; Gordon et al., 2020; Raganato
et al., 2020; Dong et al., 2019; Yao et al., 2021; Mao et al., 2020; Hinton et al., 2014; Sanh et al., 2019; Sun
et al., 2019; Jiao et al., 2019; Sun et al., 2020b; Wang et al., 2020; Lan et al., 2019; Dehghani et al., 2018; Liu
et al., 2021; Hu et al., 2021; Micikevicius et al., 2018). Among the large body of litterateurs, we mainly cover
the recent related works on INT4 quantization and system inference.

As described in the introduction, the 8-bit quantization for LLMs, and/or mixing with other precision, has
been widely studied and proven to be effective in recent years (Yao et al., 2022; Xiao et al., 2022; Dettmers
et al., 2022a,b; Li et al., 2022; Kim et al., 2021). However, the purely INT4 quantization, as a very aggressive
technique that can have a significant impact on the accuracy of the model, is not widely used in practice
and still emerging. To the best of our knowledge, we describe some more closely related works besides those
mentioned in the introduction. In Sun et al. (2020a), a 4-bit floating point format with an adaptive gradient
scaling technique is proposed to demonstrate its effectiveness in computer vision, speech and NLP tasks and
solid hardware acceleration. Our study focuses on the use of INT4 quantization instead of FP4 and the
acceleration hardware is based on the Ampere structure. In Chung et al. (2020), a low-bits mixed precision
quantization strategy is proposed to represent Transformer models. However, their activations are kept in full
precision. In Han et al. (2020), a detailed implementation of INT4 optimization is presented, but it is only
applicable to convolution networks and not transformer models.

B Quantization Algorithms
Weight Quantization. To quantize a weight matrix W ∈ Rdin×dout in a model, we apply the group-wise
quantization method proposed in Shen et al. (2020); Yao et al. (2022). That is, we vectorize Vectorize(W) ∈ Rd

(d = dindout) and participate the weight into g groups, and each group is quantized separately. The finer the
quantization we use (larger g), the smaller the approximation error is between the weight matrix and the
4-bit counterpart. The largest group number we apply here is din, i.e., a row-wise weight quantization for
best GPU utilization,

Activation Quantization. Different from the static weight parameter during inference, the activation is
dynamic. In order to achieve the best latency reduction (Gholami et al., 2021), the static quantization method
calibrates S using training data and fixes S during inference. However, this also limits the quantization
representation for activation as discussed in Yao et al. (2022). Thus, we adopt a finer-grained token-wise
dynamic quantization and use the min/max range for each token.

C Additional Experimental Details and Results

C.1 Experimental Details for Section 2.2
All experiments are performed on V100 GPU and the training strategy is Quantization-aware Training (QAT)
with Knowledge Distillation (KD). For BERT-models, the maximum sequence length for MNLI/QQP is set
to 128 with a batch-size of 64 for base and 32 for large. Each independent experiment is ran on a single
GPU with a fixed random seed 42. We recorded their validation performances over the training every 1000
iterations and report the best validation value. For BART-type models, we follows closely with Li et al. (2022)
with a slightly different hyper-parameters as shown in Table C.1. Each independent experiment is ran on 2
GPUs for base models and 4 GPUs for large model. As for GPT2-type models, we applied the pretrained
hugging-face models with maximum length 1024 and a batch-size of 8 with 4 GPUs for an independent run.
See Table C.1 for the hyper-parameters search and we will open sources the codes and the configurations.

Asymmetric and Symmetric Quantization. To give better understand on the difference of asym-
metric and symmetric quantization, we plot in Figure C.1 for the iterative performance over the validation
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datasets during the quantized-aware training. The orange curves always sits on top of the blue dash line,
proving the assymetric quantization is better than symmetric. Furthermore, Figure C.1 shows that (1)
The gaps between symemtric and assymetric quantization appears more obvious as the model size increase
from base (the first row) to large/medium (the second row), which indicates the importance of asymmetric
quantization for large models; (2) While the benefits of asymmetric method (over the symmetric one) could
become marginal from the beginning of the training to the end, it appears that is only the case for BERT
and BART not for GPT.

Table C.1: The hyper-parameters we tuned for the results in Table 1. The entry with single choice means we
only use the default value. For the entry with multiple choice, we bold the one that gives the best performance.
In the table, Att with ? (Att?) means the attention scores that is not normalized, and Att is a normalized
version (note that the default output from Huggingface library is a normalized venison of attention scores).

Models BERT BART GPT
Size Base Large Base Large Base Medium

Dropout 0.1 (default) 0.1 (default) {0, 0.05, 0.1}
Clip Values {[-5.0, 5.0], [-∞, +∞]} {[-1,1],[-2.5,2.5]} [-2.5, 2.5] {[-0.5,0.5],[-1, 1], [-2.5, 2.5]}
Loss Terms Logit/Att?/Rep (default) ClsLoss/Logit/Att?/Rep {None,ClsLoss}+{Att,Att?}+Logit/Rep
Epoch {3, 9} {3, 5} 20 8 {30, 60, 90} {15, 30, 45}
batch-size 64 32 16 8 8 8
Learning Rate {5e-5, 1e-4} {2e-5, 5e-5} {2e-5, 5e-5} {2e-5, 5e-5} {5e-5, 1e-4, 5e-4} {5e-5, 1e-4}
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Figure C.1: The performance of w4a4 during the quantization-aware trainig with KD over the validation
dataset for BERT (left), BART (middle), GPT (right) models, respectively with metrics: Accuracy (Acc.,
higher is better), Rouge Lsum (RLsum, higher is better), and perplexity (PPL, lower is better). Molde sizes
in the top row are smaller than those in the bottom row.

C.2 MKQ-BERT Results
Table C.2 shows the latency for a single BERT-base layer reported by MKQ-BERTTang et al. (2022) Table 2,
compared to FasterTransformerNVIDIA (2023). We can see that both the FP32 and INT8 results are off by
more than an order of magnitude. Due to the lack of implementation details described in the MKQ-BERT
paper (no open-sourced code), we cannot further identify the issue.

C.3 Sensitivity of Activation Quantization for GPT2
In this section, we study how sensitive the model quality to activation quantization. We relax the INT4
activation to be INT8 or back to FP32, and follows the same QAT recipe as W4A4. We plot average perplexity
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Table C.2: End-to-end inference time (ms) for running one layer in BERT-base model with different batch
size and sequence length on NVIDIA T4 GPUs. Column 2 to 4 are numbers taken from Tang et al. (2022).
FasterTransformer(FT) requires sequence length to be multiple of 32, thus the inputs in the parenthesis are
used to run FasterTransformer.

Batch Size-Seq. Length MKQ-fp32 MKQ-int8 MKQ-in4 FT-fp32 FT-int8
16-440 (16-448) 1.38 0.2131 0.1605 25.62 5.1
16-537 (16-544) 1.845 0.2457 0.1793 34.25 6.61
16-681 (16-704) 2.69 0.2609 0.1965 46.54 9.39

with respect to the training iteration in Figure 5 (left) as well as the position perplexity at training iteration
34000 in Figure 5 (right). We see that although using QAT with KD, w4a8 (green) can be better than
W4A4 but still far away from teacher’s quality. Only 4-bit weight quantization (w4 only, red curve) can
almost match the teacher’s quality (blue), which indicates that autoregressive generation using GPT models
is highly sensitive to activation quantization. It is interesting to notice that the red curve in Figure 5 (left)
already flatten at the beginning of the training, which means PTQ method could be possible for weight only
quantization, this aligns with observation in Dettmers and Zettlemoyer (2022).

C.4 More Experiments on Composing Pruning and INT4
Besides the MNLI/QQP mentioned in Section 5.1, we include the following GLUE tasks for the W4A4
quantization: MRPC (Dolan and Brockett, 2005), STS-B (Cer et al., 2017), SST-2 (Socher et al., 2013),
QNLI (Rajpurkar et al., 2016), QQP (Iyer et al., 2017), MNLI (Williams et al., 2017), CoLA (Warstadt et al.,
2018), RTE (Dagan et al., 2013)). The maximum sequence length is set to 64 for CoLA/SST-2, and 128 for
the rest sequence pair tasks.

Table C.3: Comparison between static and iterative pruning methods on top of w4a4 models. Here the 50%
sparsity is semi-struture pruning with Pair-(2:4). We applied data augmentation for the smaller datasets and
used the long training epochs (Budget-C) shown in Table C.4. The learning rate is fixed with 1e-4. Note the
results for MNLI and QQP are different from Table 2 is due to the teacher models.

Model Pruning Method CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg.
Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea all

BERTbase (teacher) 59.7 84.9/85.6 90.6/86.3 92.1 88.6/91.5 72.2 93.2 90.1/89.6 83.95

w4a4+ 50% sparsity Static (weight) 57.4 84.4/84.8 90.8/86.5 91.4 88.3/91.4 73.3 93.3 89.5/89.2 83.56
Iterative (gradient) 58.1 84.3/84.9 90.9/86.8 91.4 88.4/91.4 72.9 93.3 89.4/89.0 83.61

Table C.4: Training budgets for the GLUE tasks.

Dataset Data Training epochs:
Aug. Budget-A Budget-B Budget-C

QQP/MNLI no 3 9 18 or 36
QNLI yes 1 3 6 or 9
SST-2/STS-B/RTE yes 1 3 12
CoLA/MRPC yes 1 3 12 or 18
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Table C.5: Results with data augmentation. W4A4 with Budget-A

Cost learning CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg. Avg. w/o
rate Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea all CoLA

BERTlarge (fp32) 63.4 85.4/85.4 91.6/88.0 92.2 88.4/91.05 74.00 93.6 90.3/90.1 84.81 87.50

Budget-A

1e-05 62.1 85.6/85.3 91.2/87.3 92.5 88.3/91.3 69.7 93.7 90.3/90.1 84.20 86.96
5e-05 64.6 85.6/85.2 91.0/87.0 92.5 87.7/90.9 72.2 93.8 90.7/90.4 84.72 87.24
0.0001 61.7 85.8/85.4 90.9/87.0 91.9 88.5/91.5 75.5 93.8 90.6/90.3 84.80 87.69

Best (above) 64.6 85.8/85.4 91.2/87.3 92.5 88.5/91.5 75.5 93.8 90.7/90.4 85.23 87.81

BERTbase (fp32) 59.7 84.9/85.6 90.6/86.3 92.1 88.6/91.5 72.2 93.2 90.1/89.6 83.95 86.98

Budget-A

2e-05 59.1 84.5/85.0 91.2/87.0 91.7 88.3/91.3 73.6 93.7 89.8/89.4 83.97 87.08
5e-05 60.5 84.6/85.0 90.4/85.8 91.6 88.4/91.4 71.5 93.3 90.0/89.6 83.74 86.65
0.0001 59.9 84.8/85.2 90.4/85.8 92.0 88.3/91.4 72.6 93.5 89.9/89.6 83.90 86.90

Best (above) 60.5 84.8/85.2 91.2/87.0 92.0 88.4/91.4 73.6 93.7 90.0/89.6 84.24 87.21
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Figure C.2: The top two figures are for GPT2 quantization. The bottom two figures are for the comparison
between movement and `1 pruning with QAT.

Static pruning or iterative movement pruning. Now that we decide to apply prune and then
quantize (P=>Q) algorithm, one may wonder if the `1 pruning method used above is the best pruning
algorithm. Recent advancement on pruning methods suggests that Movement Pruning with iterative pruning
threshold (Sanh et al., 2020; Lagunas et al., 2021) has been proven to be effective in transfer learning for
languages models. That is, during the iterative pruning, the mask will be updated and determined by the
gradients of the weight instead of the value of the weight. Previous works only work on pruning only, here we
investigate on whether it works well with quantized models and layerwise KD.

The results are shown in Figure C.2 or Table C.3. We see that `1 is consistently better under long or
short training epochs, although the gap between the two methods can be reduced with sufficient iterations.
As the iterative pruning based on the gradient of weight matrices requires to update the masks dynamically,
the computation complexity/time is much higher than that using the static masks under the same training
iterations. Thus, this finding indicates that static pruning is sufficient when applying KD for QAT.
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