
Matrix Factorization on GPUs with Memory Optimization and
Approximate Computing

Wei Tan
∗

Citadel

Chicago, IL 60603

weitan@ieee.org

Shiyu Chang

IBM Research

Yorktown Heights, NY 10598

shiyu.chang@ibm.com

Liana Fong

IBM Research

Yorktown Heights, NY 10598

llfong@us.ibm.com

Cheng Li*

University of Illinois at

Urbana-Champaign

Urbana, IL 60801

cli99@illinois.edu

Zijun Wang

IBM Research

Yorktown Heights, NY 10598

zijun.wang@ibm.com

LiangLiang Cao*

HelloVera.AI

New York, NY 10013

llc@hellovera.ai

ABSTRACT

Matrix factorization (MF) discovers latent features from observa-

tions, which has shown great promises in the �elds of collaborative

�ltering, data compression, feature extraction, word embedding,

etc. While many problem-speci�c optimization techniques have

been proposed, alternating least square (ALS) remains popular due

to its general applicability (e.g. easy to handle positive-unlabeled

inputs), fast convergence and parallelization capability. Current

MF implementations are either optimized for a single machine or

with a need of a large computer cluster but still are insu�cent. �is

is because a single machine provides limited compute power for

large-scale data while multiple machines su�er from the network

communication bo�leneck.

To address the aforementioned challenge, accelerating ALS on

garphics processing units (GPUs) is a promising direction. We pro-

pose a novel approach in this paper. We analyze the procedure of

MF and focus on enhancing the e�ciency via both memory op-

timization and approximate computing. �e former exploits

GPU memory hierarchy to increase data reuse, while the later re-

duces unnecessary computing without hurting the convergence

of the learning algorithm. Extensive experiments on large-scale

datasets show that our system not only outperforms all competing

CPU solutions by a large margin but also has a 2x-4x performance

gain compared to the state-of-the-art GPU solution. Our implemen-

tations are open-sourced and publicly available.

CCS CONCEPTS

•Computing methodologies→ Factor analysis;

•Computer systems organization→Heterogeneous (hybrid)

systems;

•�eory of computation→ Massively parallel algorithms;

∗
Work done while at IBM Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP 2018, Eugene, OR, USA
© 2018 ACM. 978-1-4503-6510-9/18/08. . .$15.00

DOI: 10.1145/3225058.3225096

KEYWORDS

Matrix factorization, machine learning, GPU, CUDA, Parallel Com-

puting.

1 INTRODUCTION

Matrix factorization (MF) is one of the most important data mining

techniques due to its implementation simplicity and broad appli-

cability. For instance, MF is the core of modern recommender

systems [13, 15, 33]. MF has also been widely used in compress-

ing large models (e.g. deep neural networks) for mobile usage [1],

calculating word embedding [15, 28], etc. However, the big data

processing, with massive data is generated at an unprecedented

rate, demands further acceleration of MF. For example, the number

of active users of Facebook exceed 1.860 billion in the fourth quarter

of 2016
1
. Solving MF e�ciently under such a large scale challenges

many existing solutions.

Although many studies [3, 9, 16, 22, 27, 30, 36, 37, 39] have been

conducted to accelerate MF, they are still insu�cient to process

large scale data set. �ese methods either use multiple threads on

one machine or multiple processes on distributed systems. �e for-

mer one uses shared memory which is e�cient but hard to handle

big data in real-world se�ings. On the other hand, the communi-

cation cost becomes the major bo�leneck in distributed systems,

which signi�cantly reduces its e�ciency in terms of aggregated

�oating point operations per second (FLOPS). Nevertheless, with

recent successes of deep learning [4] using graphics processing

units (GPUs), there comes a new venue for expediting other data

mining algorithms [2, 31]. GPU has superior compute power and

memory bandwidth compared to CPU [10]. Moreover, GPUs on

one server can leverage interconnections such as NVLink [25] (40

GB/s per link with four links per GPU) which is much faster than

any existing network. �erefore, we consider to solve the problem

of MF using the alternating least square (ALS) method on GPUs.

In this paper, we propose a novel approach in solving MF on

GPUs, termed cuMFals , with major contributions in two-fold:

• To fully utilize the GPU memory hierarchy, we identify hotspot

variables to retain data as close to compute as possible. A�erward,

the memory loading process is accelerated through an innovative

1
h�ps://ibm.biz/BdstmU

https://ibm.biz/BdstmU

ICPP 2018, August 13–16, 2018, Eugene, OR, USA W. TAN et al.

State-of-the-art
GPU solution [31]

Memory
optimization

Approximate
computing

cuMFALS

2x-4x speedup with
same accuracy

Figure 1: We optimize the state-of-the-art GPU implementa-

tion via two directions: memory optimization and approx-

imate computing. Combining the two, we achieve 2x - 4x

speedup with the same accuracy.

and non-conventional scheme by exploiting GPU architectural

features such as occupancy and cache.

• We develop an iterative conjugate gradient (CG) solver on GPUs.

�is approximate solver reduced the compute complexity from

O(f 3) to O(f 2) (f is the dimension of latent features) without

hurting convergence. �is optimization brings a speedup of 4x

compared to calculating in exact. Moreover, CG works naturally

with Nvidia’s newly developed half precision feature, which

further doubles the speed.

A graphical illustration of our proposed approach is shown in Fig-

ure 1. By jointly optimizing the memory loading scheme and the

approximate compute strategy, we are able to not only outperform

all distributed CPU solutions by a large margin, but also make 2x-

4x improvements over the state-of-the-art GPU implementation.

Such performance gains have been validated through extensive

experiments on various GPU architectures. Our implementation is

open-sourced on GitHub
2
, available as a library to accelerate many

applications.

2 PRELIMINARIES

Matrix factorization (MF) factorizes a matrix R ∈ Rm×n (with Nz
non-zero elements) into two low-rank matrices X ∈ Rm×f and

Θ ∈ Rn×f , such that R ≈ X · ΘT . For any u and v , such tat

1 ≤ u ≤ m and 1 ≤ v ≤ n, ruv is the (i, j) entry of R. �us,

ruv ≈ xTu · θv , where xu ,θv ∈ Rf are the uth column of XT
and

thevth column of ΘT , respectively. �en the optimization problem

of MF is given as:

min

X ,Θ

∑
ruv,0

(ruv − xTu θv)2 + λ(
∑
u

nxu | |xu | |2 +
∑
v

nθv | |θv | |
2), (1)

where nxu and nθv are the number of non-zero elements of xu and

θv , respectively; λ is the regularization parameter. Two important

approaches ALS and SGD both minimize equation (1), yet using

di�erent approaches that we will discuss the next.

ALS: ALS is an iterative method that �rst optimizes X while �xing

Θ, and then solves Θ while �xing X . In every iteration, all observa-

tions (ruv , 0) are used to update the current variable. Moreover,

2
h�ps://github.com/cuMF/cumf als

both subproblems are convex and the update procedures for them

are given below.

Update X : �e optimal solution of the uth column of XT
is ob-

tained by solving the following linear system:∑
ruv,0

(θvθTv + λI) · xu = ΘT · RTu∗ . (2)

Update Θ: Similarly, the optimal solution of vth column of ΘT is

obtained by solving:∑
ruv,0

(xuxTu + λI) · θv = XT · R∗v . (3)

Here,Ru∗ andR∗v are theuth row andvth column ofR, respectively.
It is worth mentioning that the updates of each xu and θv are

independent. In other words, every row of matrixX can be updated

in parallel while keeping Θ �xed. �e same procedure is applicable

to update Θ as well. To ease repeating, throughout the rest of this

paper, we will only focus on solving X .

�e solution of equation (2) has a closed form as

xu = (
∑

ruv,0
θvθ

T
v + λI)−1 · ΘT · RTu∗, (4)

which involves calculating a matrix inverse. Nevertheless, matrix

inverse is compute intensive and unnecessary in solving the linear

system in (2). Instead, many literatures [18, 29] solve the problem

in a two-step fashion:

(i) compute intermediate results of Au =
∑

ruv,0
(θvθTv + λI) and

bu = ΘT · RTu∗, which are called get hermitian and get bias,
respectively;

(ii) solve the linear system, which will be referred as solve.
Our method also follows the two-step solving scheme. How-

ever, for each step, we propose a novel technique to be�er uti-

lize both compute and memory resources of GPUs. Comparing

get hermitian and get bias, we note that the compute complex-

ity is dominated by the former one. �us, we �rstly focus on the

optimization of get hermitian, not get bias in ALS in this paper.

SGD: SGD is also an iterative algorithm. However, di�er to ALS,

under each iteration, SGD only work with a small subset of obser-

vations denoted as Ωk
(a.k.a. mini-batch), where k is the number

of iterations. Usually, samples in Ωk
are randomly selected from

all observations. �en, the updating equations for both X and Θ

for the kth iteration are given as:

x ku = xu − αk
∑

v :ru,v ∈Ωk
(xTu θv − ruv)θv + λxu, and

θkv = θv − αk
∑

u :ru,v ∈Ωk
(xTu θv − ruv)xu + λθv ,

(5)

where αk is known as the learning rate. �e vanilla SGD algorithm

requires passing over randomly sampled data multiple times (till

converge). When multiple updates run in parallel, for example, two

samples ruv and ruv ′ are updating at the same time, their updates

to xu may overwrite each other. To address this issue, previous

studies either partition R into blocks with no overlapping rows

and columns [9, 32, 37, 39], or let multiple workers independently

update ignoring con�icts [22].

https://github.com/cuMF/cumf_als

Matrix Factorization on GPUs with Memory Optimization and Approximate ComputingICPP 2018, August 13–16, 2018, Eugene, OR, USA

Table 1: Compute and memory complexity per epoch: ALS vs. SGD. ALS is compute intensive and SGD is memory intensive,

so they need di�erent optimizations on GPUs.

Compute (C) Memory (M) C/M

ALS

get hermitian O(Nz f
2) O(Nz f + (m + n)f 2) f

solve O((m + n)f 3) O((m + n)f 2) f

SGD O(Nz f) O(Nz f) 1

Complexity: Following the roo�ine model [34], we calculate the

computation and memory complexity for both ALS and SGD and

summarize them in Table 1. Comparatively, ALS has a higher

compute-to-memory ratio than SGD, which means ALS is compute

intensive while SGD is memory intensive. Although the compute

complexity of ALS is heavier than SGD per iteration, the number

of iterations to converge is signi�cant fewer [15]. Moreover, paral-

lelization of ALS is easier since no sophisticated locking scheme

is needed [15, 35]. At last, ALS is more suitable for the case of MF

with implicit inputs, which makes it more broadly applicable.

Based on this complexity analysis, we focus our study in accel-

erating ALS in this paper, while SGD would be used as comparing

topic.

Approximate computing: �is term applied to computation that

returns approximated result as the trade-o� between accurracy

and cost/performance. [7] explores some of the applications and

hardware designs for approximate computing. �eir work showed

acceleration gain of 1.9X to 2.1X with only 2.5% quality loss. [19]

provides a detailed survey on both so�ware techniques and hard-

ware design for a large variety of applications to leverage the power

of approximate computing for cost or performance gain. We exploit

approximate computing in two aspects. Firstly, our iterative process

in linear equation solver would stop within some tolerable conver-

aging values. Secondly, we use reduced precison hardware feature

to maximize the utilization of memory bandwidth and memory

capacity.

3 MEMORY OPTIMIZATION FOR HIGH FLOPS

As mentioned in section 2, an ALS update includes two steps, i.e.
get hermitian and solve. �is section describes the memory

optimization on get hermitian and the next section introduces

the approximate computing techniques on solve. As seen from

Table 1, get hermitian has a compute complexity of O(Nz f
2).

�is is big in large-scale problems where Nz can be tens of billions,

which leads to our �rst observation.

Observation 1. get hermitian is compute intensive.

For a compute intensive function to achieve high FLOPS, it needs

to retain data as close as possible to compute units [10, 34]. In

other words, it needs e�ective caching to reduce read from external

memory, a.k.a. DRAM, as DRAM cannot sustain high FLOPS of

GPUs. Speci�cally to cuMFals , we need to identify the frequently-

used variables, exploit the GPU memory hierarchy and place ho�er

variables in faster memory. �is leads to the following solution.

Solution 1. Utiilize register and shared memory.

To decide what to cache and to where, we analyze the memory

usage in calculating Au :

• Au is read and wri�en once when adding each θvθ
T
v . �erefore,

Au is read and wri�en by nxu times, that is Nz/m on the average.

• Each θv needs to be read f times when calculating θvθ
T
v .

We can now allocate variables into di�erent places in GPU mem-

ory hierarchy based on their reuse. Usually Nz/m � f , and as

a result Au is more frequently accessed than θv . �erefore, Au
deserves the fastest cache, i.e. register, and θv is put into shared

memory, the second fastest cache. Figure 2 illustrates the mem-

ory optimization to get hermitian. For a given xu , its required
features, i.e. θv s such that ruv , 0, are staged from ΘT in global

memory (the matrix at the top) into a shared memory space of size

BIN × f (the thinner matrix in the middle), in batches. For each

staged feature θv , we calculate θvθ
T
v in tiles of size T and add to

the corresponding sub-blocks of Au in registers (the symmetric

matrix at the bo�om). Each sub-block in Au aggregates the outer

product of two tiles in θv . Consider the symmetricity of Au , we
only need to calculate the bo�om half of it. Au stored in registers

is �ushed to global memory when all required θvθ
T
v s are added in.

Because we choose to excessively use registers, they become the

constrained resources. Consequently, the occupancy of get hermitian,
i.e number of Au s that can be calculated concurrently is low.

Observation 2. Aggressive use of registers leads to low oc-

cupancy, which makes read from global memory latency-

bound instead of bandwidth-bound.

Current Nvidia GPUs have 65536 �oat registers in each stream-

multiprocessor (SM).When f = 100, each thread of get hermitian
needs 168 registers and each block needs 64 threads. As a result,

an SM can hold 65536/(168 × 64) ≈ 6 thread-blocks, i.e. an SM

can update 6 rows concurrently. Compared with the SM capacity

to hold 32 thread-blocks, this is a low occupancy. �is indicates

that there are relatively few concurrent threads loading from global

memory, which leads to the next solution.

Solution 2. Usenon-coalesced and cache-assisted read, which

is non-conventional but proven faster.

In GPU programming, memory coalescing is considered as a best

practice to achieve good performance [14]. Memory coalescing

means that adjacent threads should access adjacent global memory

addresses. It can consolidate memory load requests and avoid

wasting the bandwidth. When using coalescing, read from global

memory can bypass L1 cache, because loaded data are all used.

Given the low occupancy of get hermitian, coalesced read,

despite its e�ciency, cannot saturate the memory bandwidth. On

the other hand, when the occupancy is low, the working data can

almost �t into L1 cache. For example, when f = 100 and BIN = 32,

the θv s being actively loaded per SM is 100×32×6 (thread-block)×4
(bytes per �oat)= 75 KB. �is number is between Nvidia Maxwell’s

ICPP 2018, August 13–16, 2018, Eugene, OR, USA W. TAN et al.

n

f

θv0 θv1 θv30 θv31

...Θ
T

BIN

f...

f

f

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

27

28

29

30

31

32

33

19

20

21

22

23

24

25

26

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

30'

0 10 20 … 90

1 11 21 … 91

… … … …

… … … …

… … … …

8 18 28 … 98

9 19 29 … 99

T

T

T

T

0

10

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

T

x

y

Global

memory

T

T

×

+=

Shared

memory

Register

Block 30

(x, y) = (3, 6)
= θ(6)

(θ
(3)

)T

θv0
(6)

(θv0
(3)

)T

30'=(30)
T

 θ
(6)

 θ
(3)

Figure 2: �e memory optimization to get hermitian. For a given xu , its required θv s such that ruv , 0, are staged from ΘT

from global memory to a sharedmemory bu�er of size BIN ∗ f , in batches. For each θv in sharedmemory, we calculate θvθ
T
v in

tiles of sizeT , and add to sub-blocks ofAu in registers. Each sub-block inAu adds the outer product of two tiles in θv . Consider
the symmetricity, we only calculate tiles with coordinates of x ≤ y. For example, for θv0, tiles 3 and 6 need to do outer product

and add to sub-block 30 in Au , i.e., block30 += θ (6)v0(θ
(3)
v0)

T
, and block30′ = (block30)T . Au in registers is �ushed to global memory

a�er all required θvθ
T
v s are added into it.

L1 cache of 48 KB and L2 cache of 128 KB (3 MB shared by 24 SMs).

Inspired by this observation, we use a parallel but non-coalesced

read scheme as illustrated in Figure 3 (b). Without losing generality,

we load 32 features θv0,θv1,θv30, . . . ,θv31 using 32 threads. With

the coalesced scheme in Figure 3 (a), 32 threads together read one

θv column before moving to the next one. Alternatively, in the

non-coalesced scheme in Figure 3 (b), 32 threads read 32 columns

concurrently, with each thread reading one column. Because of the

small working data set size, L1 and L2 cache can e�ciently serve as

the coalescing cache. �at is, the non-coalesced load requests issued

from t0, t1, . . . , t30, t31 are going to hit L1 and L2, which makes it

even more e�cient than coalesced read.

To showcase the e�ectiveness of solution 2, we measure the per-

formance of coalesced and non-coalesced read in get hermitian.
We use the Net�ix dataset (see Section 5.1 for more details on

datasets) and measure the time of three phases in get hermitian:
load from global memory to shared memory (load), compute Au
(compute), and writeAu to global memory (write). Figure 4 shows

the performance of both update-X and update-Θ procedures, in

three di�erent se�ings: coal means coalesced read, the se�ing

illustrated in Figure 3 (a); nonCoal-L1 means non-coalesced read,

Matrix Factorization on GPUs with Memory Optimization and Approximate ComputingICPP 2018, August 13–16, 2018, Eugene, OR, USA

n

f

t0

θv0 θv1 θv30 θv31

t1 t30 t31

n

f

θv0 θv1 θv30 θv31

(a) coalesced read, threads read feature after feature

(b) non-coalesced read, threads read features concurrently

...

...

timeline

timeline timeline timeline timeline

t0
t1

t31

...
t30

t0
t1

t31

...
t30

t0
t1

t31

...
t30

t0
t1

t31

...
t30

Figure 3: Load from global to shared memory in

get hermitian. (a) coalesced read: all threads read one

column before moving to the next. �is issues fewer mem-

ory instructions but is lack of parallelism. (b) Non-coalesced

read: multiple threads read multiple columns concurrently.

In low occupancy, the columns are cached and subsequent

non-coalesced reads will hit cache.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

noCoal-L1 noCoal-noL1 coal

update X

s
e
c
o

n
d

s

load compute write

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

noCoal-L1 noCoal-noL1 coal

update Θ

 s
e
c
o

n
d

s

load compute write

Figure 4: �e performance of coalesced and non-coalesced

read from global to shared memory in get hermitian, using
the Net�ix dataset. Bar load shows the memory load time;

non-coalesced read with L1 cache (nonCoal-L1) is the fastest.

the se�ing in Figure 3 (b) and with L1 cache; nonCoal-noL1 means

non-coalesced read with L1 cache bypassed. Result shows:

• For shared memory load, non-coalesced with L1 performs best;

non-coalesced without L1 is worse and coalesced read is worst.

• �e compute time is almost constant in all se�ings. �is is be-

cause they all need Nz × f 2 fused multiple-add (FMA) operations.

• Update-X and update-Θ need to writem × f 2 and n × f 2 �oats
to global memory, respectively. Since m < n in Net�ix data,

update-Θ takes longer in write.

4 APPROXIMATE COMPUTING IN SOLVER

Section 3 describes how to e�ciently obtain Au . A�er that, we
need to solvem equations Auxu = bu as illustrated in equation (2).

Algorithm 1 �e CG solver for Ax = b.

1: procedure CGSolve(A,x ,b, fs , ϵ)
2: r = b −A · x ; p = r ; rsold = r

T · r
3: for j = 1 : fs do
4: ap = A · p; α = rsold/(pT · ap)
5: x = x + αp; r = r − αp
6: rsnew = rT · r
7: if

√
rsnew < ϵ then

8: break

9: end if

10: p = r + (rsnew /rsold)p
11: rsold = rsnew
12: end for

13: return x
14: end procedure

4.1 Approximate solver with CG

�e direct solver, e.g., the batch LU solver in cuBLAS [23], gives

an exact solution to Ax = b with compute complexity of O(f 3),
or O(m × f 3) for m rows. �is cubic complexity leads to long

solve time, especially whenm is big. As shown in Table 1, when

m becomes big, R’s rows become sparse, andm × f 3 gets closer
to Nz × f 2. To demonstrate this, we measure the solver time of

10 ALS iterations on Net�ix data. Column LU FP32 in Figure 5

shows that, the time taken by the LU solver is almost twice as

much as that by get hermitian. �is clearly indicates that a�er

applying optimization on get hermitian, solve executing time

now becomes dominant. �is leads to the following observation.

Observation 3. Solve is compute intensive and dominant.

�is observation inspires us to seek an alternative to the direct

solver. We notice that, as an iterative approach, ALS updates X and

Θ based on estimations from the previous iteration. As errors exist

in estimations, the solution of each step is inherently inaccurate.

�erefore, solution accuracy may be sacri�ced in exchange for

compute speed, leading to our a�empt for an approximate solver.

Solution 3. An approximate conjugate gradient solver.

�e iterative CG solver is introduced in [11]. With f iterations each

of complexity O(f 2), it yields the exact solution with complexity

O(f 3). Based on this, we seek to further reduce computation while

maintaining convergence quality. �e pseudo code of our approxi-

mate CG solver is summarized in Algorithm 1, where fs is given to

control the number of iterations (see Line 3), and ϵ for tolerance
control. Empirically this approximation does not impact ALS’s con-

vergence, while e�ectively reducing the solver’s complexity from

O(f 3) to O(f 2) when fs � f .

4.2 Use reduced precision

Replacing LU solver with an approximate CG solver, the solver’s

compute-to-memory ratio (recall Table 1) now drops from O(f)

ICPP 2018, August 13–16, 2018, Eugene, OR, USA W. TAN et al.

 0

 5

 10

 15

 20

LU-FP32 CG-FP32 CG-FP16

s
e
c
o
n

d
s

solve-noL1
solve-L1

get_hermitian

Figure 5: �e solver time of 10 ALS iterations using Net�ix

data on Nvidia Maxwell Titan X. f = 100 and we use fs = 6

(the smallest number that does not hurt convergence) for

CG. CG-FP32 is 1/4 of the LU-FP32 time; CG-FP16 takes 1/2
of the CG-FP32 time. Using L1 (solve-L1) takes the same

time as without it (solve-noL1).

to O(1), converting the original compute intensive problem into a

memory intensive one.

Observation 4. CG solver is memory intensive.

As seen in Algorithm 1, CG solver is dominated by dense matrix-

vector multiplyA ·p (Line 4), which is in turn dominated by reading

A that is of memory complexity O(f 2). �is insight inspires us that

further acceleration is possible by reducing the size of A.

Solution 4. Use reduced precision in CG solver to double the

e�ective memory bandwidth.

We choose the newly introduced 16-bit �oating point format (FP16,

compared with the default 32-bit �oating point format FP32) in

Nvidia GPUs to store A. �is optimization saves 50% memory

bandwidth to load A and consequently doubles the loading speed.

To validate, we run 10 iterations of ALS using Net�ix data on a

Maxwell GPU. Figure 5 shows the total solver time. �e time of CG

solver with FP32 (CG-FP32) is only 1/4 of that of LU solver with FP

32 (LU-FP32). When CG uses FP16, CG-FP16 takes 1/2 of the time

compared with CG-FP32. In total, CG-FP16 can reduce the run-time

to 1/8 compared with LU-FP32.

Does L1 cache bene�t the CG solver?

Figure 5 also illustrates that, loading Au with L1 cache does not

yield any performance bene�t. �is is coherent with the analysis

in section 3: L1 cache is only useful to coalesce the non-coalesced

memory access when occupancy is low. With batch CG’s high

occupancy and coalesced read, L1 cache is not useful at all. �is

also explains why L1 cache is disabled by default in Nvidia GPUs.

5 EXPERIMENTS

In this section, we show the advantages of the proposed cuMFals

framework compared to a set of state-of-the-art implementations

for both CPU and GPU. Our experiments are designed to answer

the following questions:

• How fast cuMFals is compared to competing implementations?

• How e�ciently cuMFals utilizes compute resource (in terms of

FLOPS) and memory bandwidth of GPU, as argued in sections 3

and 4?

• How does cuMFals compare to SGD?

Table 2: Benchmark datasets and parameters.

Dataset m n Nz f λ RSME

Net�ix 480,189 17,770 99M 100 0.05 0.92

YahooMusic 1,000,990 624,961 252.8M 100 1.4 22

Hugewiki 50,082,603 39,780 3.1B 100 0.05 0.52

• Can cuMFals extent to the se�ing of MF with implicit feedback

(a.k.a one-class or positive-unlabeled inputs)?

5.1 Datasets

We utilize three publicly available datasets as follows:

• Netflix [38]: �eNet�ix dataset consists ratings onmovies. Each

rating is in the scale of one to �ve.

• YahooMusic [6]: Similar to the Net�ix, this dataset contains 250

million ratings in the range of 1 to 100 for music collected by the

Yahoo! Music Radio service.

• Hugewiki [39]: Hugewiki contains a snapshot ofWikipedia. �e

observation matrix R describes the frequency of English terms

appeared in di�erent documents.

�e detailed statistics are summarized in Table 2. We choose

0.92, 22 and 0.52 as the convergence value for Net�ix, YahooMusic

and Hugewiki, respectively, because these values are used by many

papers and considered well-accepted.

5.2 Experiment setting

For the purpose of comprehensive evaluations, experiments are

conducted on three di�erent generations of Nvidia GPUs: Kepler,

Maxwell and Pascal. Table 3 illustrates the con�gurations of the

three servers we use. CPU-only experiments are conducted on the

most powerful Pascal server unless otherwise mentioned.

For quantitative comparison, we follow the standard experiment

se�ing [37, 39] by reporting how fast the root mean square error

(RMSE) on the testing test reduces. �e stopping criteria for all

algorithms is when the RSME on testing set reaches an “acceptable

level”. Speci�cally, the acceptable RSME is 0.92, 22.0 and 0.52 for

Net�ix, YahooMusic and Hugewiki, respectively. Furthermore, we

make use of the original training and testing �les from the providers

of Net�ix and YahooMusic datasets while randomly extract 10% of

the data as the testing set for Hugewiki. It is worth mentioning

that, we focus on system-level e�ciency in terms of running time

instead of the recommendation accuracy. To achieve the goal, we

use the same set of parameters (f and λ) as reported from earlier

works [31, 37, 39], which is also shown in Table 2.

5.3 Convergence speed: is cuMFals fast?

�ere are many studies and systems on accelerating MF [3, 9, 16,

20, 22, 27, 30, 35–37, 39]. Among them, we compare with the rep-

resentative works below because they are with state-of-art per-

formance (i.e., convergence speed) or scalability.

• LIBMF [3, 39]: �e state-of-the-art CPU-based multi-thread

solution using a single machine.

• NOMAD [37]: NOMAD is a CPU-based solution using SGD. Dif-

ferent from LIBMF, it runs on multiple machines using message

passing interface (MPI) to communicate.

Matrix Factorization on GPUs with Memory Optimization and Approximate ComputingICPP 2018, August 13–16, 2018, Eugene, OR, USA

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20

Netflix

T
e
st

 R
M

S
E

Training Time (second)

LIBMF
NOMAD

cuMFALS@M
cuMFALS@P

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 26

 0 10 20 30 40 50 60 70

YahooMusic

T
e
st

 R
M

S
E

Training Time (second)

LIBMF
NOMAD

cuMFALS@M
cuMFALS@P

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 100 200 300 400 500 600 700 800 900 1000

Hugewiki

T
e
st

 R
M

S
E

Training Time (second)

LIBMF
NOMAD

cuMFALS@M
cuMFALS@P

Figure 6: cuMFals vs. CPU solutions w.r.t. convergence time. LIBMF uses 40 cores on onemachine; NOMAD uses 32 machines

for Net�ix and YahooMusic, and 64 machines for Hugewiki. cuMFals uses one GPU for Net�ix and YahooMusic, and four

GPUs for Hugewiki. cuMFals on Maxwell (@M) and Pascal (@P) converges signi�cantly faster than all other approaches.

Table 3: Con�g of Kepler, Maxwell and Pascal servers.

Kepler

CPU Two 8-core Intel Xeon E5-2667, 256 GB RAM

GPU Two Kepler K40, each: 4 TFLOPS, 12 GB RAM, 288 GB/s

Maxwell

CPU Two 12-core Intel Xeon E5-2670, 512 GB RAM

GPU Four Titan X, each: 7 TFLOPS, 12 GB RAM, 340 GB/s

Pascal

CPU Two 10-core IBM Power8 with SMT 8, 512 GB RAM

GPU Four Tesla P100, each: 11 TFLOPS, 16 GB, 740 GB/s

• BIDMach [2]: BIDMach is a single GPU library that contains a

set of matrix functions on top of which machine learning algo-

rithms can be built. It also implements ALS based on a general

purpose sparse matrix function.

• HPC-ALS [8]: It implements ALS on single GPU by exploiting

registers and shared memory. However, it has no non-coalesced

read, approximate solver or reduced precision.

• GPU-ALS [31]: �e state-of-art ALS implementation on GPUs

but without our memory optimization and approximation pre-

sented in Section3 and Section4, respectively.

• GPU-SGD [35]: Section 2 discussed the di�erence between ALS

and SGD solvers for MF. We also compared with a CUDA-based

SGD solution that solves MF problems with one or multiple

GPUs, using matrix blocking and Hogwild!-style algorithms [22]

to parallelize the SGD updates. For individual SGD updates, it

leverages GPU architectural features such as cache, warp-shu�e

instructions, and half-precision �oats. In Section 5.5 we will

discuss and compare these two methods in detail.

It is worth mentioning that, the performance of CPU-based al-

gorithms not necessarily improves as the number of threads/ma-

chines increases due to two reasons: 1) synchronization on shared

data structures and 2) communication overhead. Enlarging the

number of compute resource may even hurt their performance [8].

�erefore, we use 40 threads for LIBMF, which achieves the best

performance. For NOMAD, we use the best se�ings as reported

in [37], which are 32 machines for Net�ix and Yahoo, and 64 ma-

chines for Hugewiki. Moreover, BIDMach and HPC-ALS can only

use one GPU, while GPU-ALS and cuMFals can adopt multiple

GPU se�ings. We test all GPU-based algorithms using one GPU on

both Net�ix and YahooMusic. Furthermore, to show how well both

GPU-ALS and our framework scale with the number of GPUs, we

use four GPUs for both algorithms on the Hugewiki dataset.

Figure 6 shows the relation between test RMSE and training

time while table 4 summarizes the time when RMSE reaches an

acceptable level. Clearly, cuMFals outperforms all CPU solutions

with a large margin. Speci�cally, on both Net�ix and YahooMusic

datasets, cuMFals with single Pascal GPU (cuMFals@P) achieves

5.6x-7x performance gain compared to LIBMF. As for Hugewiki,

cuMFals with four Pascal GPUs only takes 68 seconds to converge,

which is signi�cantly faster compared to 459 seconds for NOMAD

(6.7x) and 3021 seconds for LIBMF (44.4x). �e reason BIDMach

is not included in the table is that it does not converge to the

acceptance level. Regardless the convergence, we can observe the

ALS kernel of BIDMach runs at 40 GFLOPS, which is similar to

the reported measurement in their original paper [2]. However,

40 GFLOPS is much lower than cuMFals (see section 5.4 for our

performance in terms of FLOPS). On the other hand, since HPC-

ALS is not open-source, we only compare our performance of per

iteration time on Net�ix, which has been reported in their paper.

Results show that cuMFals runs twice as fast as HPC-ALS on the

same hardware (Kepler K40). Furthermore, compared with GPU-

ALS, cuMFals has a signi�cant performance advantage thanks to

our memory optimization and approximate computing techniques.

On Net�ix with Maxwell GPU, cuMFals only needs 6.5 seconds to

converge while GPU-ALS needs 28 seconds, i.e. a 4x speedup. As a
summary, cuMFals also outperforms all state-of-art GPU solutions.

5.4 Has cuMFals fully exploited GPU?

In this section, we validate whether the proposed cuMFals frame-

work has fully exploited the potential of GPU hardware. �e

analytics are done by examining if the compute-intensive ker-

nel get hermitian has achieved high FLOPS, and if the memory-

intensive CG solver has achieved high memory bandwidth.

Has get hermitian achieved high FLOPS?

To obtain get hermitian: Au =
∑

ruv,0
(θvθTv + λI) for 1 ≤ u ≤

m, one needs to read the sparse matrix R and performm matrix

ICPP 2018, August 13–16, 2018, Eugene, OR, USA W. TAN et al.

Table 4: Training time in seconds when converging to ac-

ceptable RMSE. @M: Maxwell GPU, @P: Pascal GPU.

Studies Net�ix YahooMusic Hugewiki
LIBMF [3] 23 38 3021

NOMAD [37] 9.6 109 459

GPU-

ALS@M [31]

28 42 400

cuMFals@M 6.5 13.2 166

cuMFals@P 3.3 6.8 68

cuMFals@P

/LIBMF

7x 5.6x 44.4x

multiplications. �e of size of each multiplication is Rf ×nxu ×
Rnxu ×f , where nx1 + nx2 + ... + nxm = Nz . To our best knowledge,

no existing GPU library including cuBLAS has implemented the

get hermitian function for us to compare. �e closest baseline

is the batched-matrix-multiplication gemmBatched [24] in cuBLAS,

which calculatesm matrix multiplications of the same dimension:

Ra×b × Rb×c . Although gemmBatched cannot parallelize matrix

multiplications with di�erent sizes, to compare, we set the dimen-

sion of each computation in our get hermitian to be the same.

Under this se�ing, two algorithms can be fairly compared and we

measure the FLOPS achieved by both with Kepler, Maxwell and

Pascal on Net�ix.

Experimental results, as illustrated in Figure 7(a), shows that

cuMFals achieves higher FLOPS in all three generations of GPUs.

�is is impressive because get hermitian compared to gemmBatched
in cuBLAS needs to perform extrawork. Speci�cally, get hermitian
needs to read sparse R to get references to Θ, and batch-multiply

matrices with variable sizes. However, cuBLAS only needs to read

dense input and batch-multiply matrices with the same size, which

has no time cost on �nding references. Moreover, regarding FLOPS

e�ciency (i.e., the achieved-FLOPS divided by the device’s peak-

FLOPS) Figure 7(a) indicates that cuMFals achieves be�er per-

formance in Nvidia newly developed architectures. �is can be

explained by the fact that performance of get hermitian is gener-

ally limited by the number of registers. Comparing Kepler, Maxwell

and Pascal, the number of registers per core increases as technol-

ogy evolves. At the same time, it reveals that our design discipline

matches the development trend of GPU.

Has the CG solver achieved high memory bandwidth?

We measure the memory transfer rate (GB/s) between GPU SMs

and its DRAM, and compare it to the bandwidth achieved by CUDA

function cudaMemcpy. Since cudaMemcpy only copies memory and

deals with no computation, the comparison with it can indicate how

well the CG solver can saturate the device memory bandwidth. As

seen from Figure 7(b), cuMFals achieves a higher bandwidth than

cudaMemcpy on all three types of GPUs. �is demonstrates that our

proposed CG solver utilizes the memory bandwidth e�ciently.

5.5 ALS vs. SGD on GPUs

As discussed in early Section 2, ALS and SGD have their own at-

tributes in solving the problem of MF. SGD runs faster per iteration

but requires more iterations. When the rating matrix gets denser,

 0

 1

 2

 3

 4

 5

 6

 7

Kepler Maxwell Pascal
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

(a)

T
F

L
O

P
S

F
L

O
P

S
 u

ti
li

za
ti

o
n

cuMF
cuBLAS
cuMF%

 0

 100

 200

 300

 400

 500

 600

 700

Kepler Maxwell Pascal 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b)

m
em

o
ry

 b
w

 (
G

B
/s

)

b
w

 u
ti

li
za

ti
o

n

cuMF
memcpy
cuMF%

Figure 7: (a) �e FLOPS and e�ciency of get hermitian on

GPUs of three generations. cuMFals achieves higher FLOPS

than the batch cuBLAS routine for �xed size and higher

FLOPS e�ciency on newer GPUs. (b) �e memory band-

width achieved by CG solver is shown to be higher than the

bandwidth of cudaMemcpy.

ALS has more advantage because SGD’s complexity grows [15] and

also becomes harder to parallelize [35].

We implemented both ALS and SGD
3
and compare their perfor-

mance on GPUs. We follow the same se�ing as before, and report

the results in Figure 8. Come as no surprise, ALS runs slower in

each iteration, but requires fewer iterations to coverage. On one

GPU, ALS converges slightly faster than SGD on Net�ix, but slightly

slower than SGD on YahooMusic and Hugewiki. However, with

four GPUs (als@4), ALS converges faster than SGD on Hugewiki

data.

Moreover, as seen in Table 1, SGD’s computation complexity

(O(Nz f)) grows linearly with Nz . �is makes it ine�cient when

the rating matrix R becomes more dense. �is issue becomes se-

vere when dealing with implicit inputs, where the rating matrix is

considered fully dense, i.e., Nz =m ∗ n [12]. ALS can easily adapt

to the se�ing of MF with implicit inputs, which we will discuss

separately in section 5.6.

5.6 Implicit matrix factorization

MF with implicit inputs has been widely used in real-life applica-

tions [12, 33] where explicit ratings are replaced by implicit ones

such as purchase or number of clicks. To show ALS is able to handle

implicit inputs, we follow the same se�ing as shown in [12], by

considering a binary matrix P ∈ Rm×n . puv = 1 if the implicit

observations ruv > 0, and puv = 0 otherwise. �e original paper

also adds con�dence measures cuv to predictions, which leads to

the following cost function:

min

X ,Θ

∑
u,v

cuv (puv − xTu θv)2,

where cuv = 1 + αruv and α is a given scaling constant. In other

words, any ruv = 0 is no longer treated as a missing rating, but

as a zero-rating with low con�dence cuv . Under this assumption

[12], P is not sparse and therefore SGD will be costly. In such a

way, SGD loses its competitiveness. �erefore, we compare cuM-

Fals with two open-source libraries for implicit MF: implicit4 and
QMF5. Experiments demonstrate that cuMFals converges under

3
h�ps://github.com/cuMF/

4
h�p://github.com/benfred/implicit

5
h�p://github.com/quora/qmf

https://github.com/cuMF/
http://github.com/benfred/implicit
http://github.com/quora/qmf

Matrix Factorization on GPUs with Memory Optimization and Approximate ComputingICPP 2018, August 13–16, 2018, Eugene, OR, USA

 0.92

 0.94

 0 5 10 15 20

Netflix

T
e
st

 R
M

S
E

Train Time(second)

als@1
sgd@1

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 26

 0 10 20 30 40 50

YahooMusic

T
e
st

 R
M

S
E

Train Time(second)

als@1
sgd@1

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 100 200 300 400 500 600 700

Hugewiki

T
e
st

 R
M

S
E

Train Time(second)

als@1
sgd@1
sgd@4
als@4

Figure 8: ALS vs. an SGD solution [35] on one (@1) and four (@4) GPUs.

the implicit se�ing and the per iteration time of cuMFals , implicit
and QMF are 2.2, 90, and 360 seconds, respectively.

6 RELATEDWORK

�is section reviews related work on parallel matrix factorization

with SGD, ALS and cyclic coordinate descent (CCD) algorithms.

Table 5 is a summary and details are in the following subsections.

6.1 Parallel SGD

SGD is inherently serial where each time one sample is selected

to update. To accelerate this process, two samples can update in

parallel if they are neither in same row nor same column. �is

observation has led to two ways to parallel SGD for MF: lock-free

Hogwild! [22] and blocking [9, 27, 36, 39]. Hogwild! observes

that when R is very sparse and the number of parallel workers is

much less than the dimension of R, they can independently up-

date samples with a low probability of con�ict. Blocking divides R
into several sub-blocks, and sub-blocks that do not share rows or

columns can update in parallel.

CPU approaches. SGD has been parallelized in multi-core [27, 39],

multi-node MPI [32, 37], MapReduce [9] and parameter-server

[5, 30] systems. �ese methods partition R into blocks with no

overlapping rows or columns, and work on these blocks in parallel.

�ey further optimize the algorithm with asynchronous communi-

cation, overlapping communication and computation, and shared

memory. For example, LIBMF [39] is very e�cient on multi-cores.

However, it stops scaling when using few dozens cores [21, 35],

because of the locking in a shared data structure. Moreover, LIBMF

is a single-machine solution and therefore cannot deal with large-

scale problems. NOMAD [37] extends the idea of block partitioning,

and alleviate the issue of global locking. It performs similarly to

LIBMF on a single machine and can scale to a 64-node HPC cluster.

Parameter server [5] can be used to implement distributed SGD. For

example, Petuum [5] can scale MF to hundreds of cores in a cluster,

and Factorbird [30] is a parameter server speci�cally implemented

for matrix factorization.

GPU approaches. Both Hogwild and blocking schemes are imple-

mented in [35]. It has e�cient kernels for SGD update, leveraging

cache, warp-shu�e instructions, and half-precision.

6.2 Parallel ALS and CCD

CPU approaches for ALS. PALS [38] and SparkALS [18] paral-

lelize ALS by feature full replication and partial replication, respec-

tively. �ese approaches are not feasible when feature matrices get

extremely large. Facebook [13] tackles this issue by partitioning the

feature matrix and rotate its parts among multiple nodes. GraphLab

[17] distributes the feature matrix among multiple machines. When

updating in amachine, needed features are fetched on-demand from

other machines.

GPU approaches for ALS. BIDMach [2] provides generic matrix

kernels for many machine learning algorithms including MF. How-

ever, its sparse kernel is not speci�cally optimized for ALS and

slower than cuMFals . HPC-ALS [8] optimizes the get hermitian
kernel similar to us. However, they used neither non-coalesced

read, nor approximate solver nor reduced precision.

Parallel CCD. CCD++ [36] performs sequential updates on one

row of the decomposed matrix while �xing other variables. CCD++

has lower time complexity but makes less progress per iteration,

compared with ALS. [20] further accelerates CCD++ on GPUs using

loop fusion and tiling. �e resulting algorithm is shown to be faster

than CCD++ on CPUs [36] as well as GPU-ALS [31] that is without

memory optimization and approximate computing.

7 CONCLUSION

Due to the importance ofMF in the �eld of datamining, in this paper,

we accelerate ALS, one of themost importantMF solving algorithms

with GPUs. Speci�cally, we identify challenges that make ALS

running slow such as constraints in the utilization of capacity and

bandwidth of memory, and computation intensiveness. To alleviate

these problems, we propose a novel framework named cuMFals.

Our algorithm exploits the GPUmemory architectures and shortens

the time of reading data via an innovative scheme. At the same time,

the proposed algorithm also eliminates unnecessary computing in

solving MF without hurting convergence. We conduct extensive

experiments under various se�ings. Our proposed method achieves

the state-of-the-art performance, suggesting that cuMFals can

signi�cantly advance the task of MF. We also integrated cuMFals

into Spark MLlib, accelerating its ALS algorithm
6
.

In future work, we would like to further analyze di�erent GPU-

accelerated MF algorithms and investigate algorithm selection

based on dataset characteristics such as dimensions and sparsity,

6
h�ps://github.com/IBMSparkGPU/CUDA-MLlib

https://github.com/IBMSparkGPU/CUDA-MLlib

ICPP 2018, August 13–16, 2018, Eugene, OR, USA W. TAN et al.

Table 5: Parallel MF solutions using SGD, ALS and CCD, on CPUs and GPUs.

CPU GPU

SGD lock-free: workers independently sample & update

single-node: HogWild! [22]; multi-nodes: FactorBird [30], Petuum [5]

blocking: workers pick non-overlapping blocks

blockDim=#workers: DSGD [9]

blockDim>#workers: LIBMF [39], NOMAD [37], DSGD++ [32]

nested blocking: dcMF [21], MLGF-MF [27]

single and multiple GPUs: GPU-SGD – SGD

with lock-free and blocking [35]

ALS replicate all features: PALS [38], DALS [32]

partial replicate features: SparkALS [18], GraphLab [17], Sparkler [16]

rotate features: Facebook [13]

approximate ALS: [29]

single GPU: BIDMach [2], HPC-ALS [8]

single and multiple GPUs: GPU-ALS [31] and

cuMFals

CCD multi-core and multi node: CCD++ [36] single GPU: parallel CCD++ [20]

and hardware resource constraints such as number of GPUs. We

also plan to investigate a hybrid solution that combines SGD and

ALS. A scenario could be using ALS for the initial batch training and

SGD for incremental updates of the model. Last but not the least, we

would like to exploit the new Nvidia Tensor Cores [26] hardware

that natively supports half-precision arithmetic, to further speed

up cuMFals .

REFERENCES

[1] Jimmy Ba and Rich Caruana. 2014. Do Deep Nets Really Need

to be Deep?. In NIPS. 2654–2662. h�p://papers.nips.cc/paper/

5484-do-deep-nets-really-need-to-be-deep.pdf

[2] John Canny, Huasha Zhao, Bobby Jaros, Ye Chen, and Jiangchang Mao. 2015.

Machine learning at the limit. In IEEE BigData, Big Data 2015. 233–242.
[3] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. 2015. A learning-

rate schedule for stochastic gradient methods to matrix factorization. In PAKDD.
Springer.

[4] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng

Andrew. 2013. Deep learning with COTS HPC systems. In ICML. 1337–1345.
[5] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu

Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons, Garth A.

Gibson, and Eric P. Xing. 2014. Exploiting Bounded Staleness to Speed Up Big

Data Analytics. In USENIX ATC. 37–48.
[6] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. 2012. �e

Yahoo! Music Dataset and KDD-Cup ’11. In KDD Cup 2011 competition.
[7] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural

Acceleration for General-Purpose Approximate Programs. In Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-45). 449–460.

[8] Mark Gates, Hartwig Anzt, Jakub Kurzak, and Jack Dongarra. 2015. Accelerating

collaborative �ltering using concepts from high performance computing. In IEEE
BigData. 667–676.

[9] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. 2011. Large-

scale matrix factorization with distributed stochastic gradient descent. In KDD.
69–77.

[10] John L Hennessy and David A Pa�erson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[11] Magnus Rudolph Hestenes and Eduard Stiefel. 1952. Methods of conjugate gradi-
ents for solving linear systems. Vol. 49. NBS.

[12] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative �ltering for

implicit feedback datasets. In ICDM. IEEE, 263–272.

[13] Maja Kabiljo and Aleksandar Ilic. 2015. Recommending items to more than a bil-

lion people. h�ps://code.facebook.com/posts/861999383875667. (2015). [Online;

accessed 17-Aug-2015].

[14] David B Kirk and W Hwu Wen-mei. 2012. Programming massively parallel
processors: a hands-on approach. Morgan Kaufmann.

[15] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization

Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37.
[16] Boduo Li, Sandeep Tata, and Yannis Sismanis. 2013. Sparkler: Supporting Large-

scale Matrix Factorization. In EDBT. 625–636.
[17] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M Hellerstein. 2012. Distributed GraphLab: a framework for machine

learning and data mining in the cloud. In VLDB. 716–727.

[18] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean

Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia,

and Ameet Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. Journal
of Machine Learning Research 17 (2016), 34:1–34:7. h�p://jmlr.org/papers/v17/

15-237.html

[19] Sparsh Mi�al. 2016. A Survey of Techniques for Approximate Computing. ACM
Comput. Surv. (March 2016), 62:1–62:33. DOI:h�p://dx.doi.org/10.1145/2893356

[20] Israt Nisa, Aravind Sukumaran-Rajam, Rakshith Kunchum, and P. Sadayappan.

2017. Parallel CCD++ onGPU forMatrix Factorization. InGPGPU@PPoPP. 73–83.
[21] Yusuke Nishioka and Kenjiro Taura. 2015. Scalable Task-Parallel SGD on Matrix

Factorization in Multicore Architectures. In ParLearning.
[22] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. 2011. HOG-

WILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In

NIPS. 693–701.
[23] Nvidia. 2015. cuBLAS. h�p://docs.nvidia.com/cuda/cublas/. (2015). [Online;

accessed 17-Aug-2015].

[24] Nvidia. 2016. cuBLAS. h�p://docs.nvidia.com/cuda/cublas/

#cublas-lt-t-gt-gemmbatched. (2016). [Online; accessed 7-Nov-2016].

[25] Nvidia. 2016. NVIDIA NVLink. h�p://www.nvidia.com/object/nvlink.html.

(2016). [Online; accessed 26-Nov-2016].

[26] Nvidia. 2017. Programming Tensor Cores in CUDA 9. h�ps://devblogs.nvidia.

com/programming-tensor-cores-cuda-9/. (2017). [Online; accessed 21-Jan-2018].

[27] Jinoh Oh, Wook-Shin Han, Hwanjo Yu, and Xiaoqian Jiang. 2015. Fast and Robust

Parallel SGD Matrix Factorization. In KDD. 865–874.
[28] Je�rey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:

Global vectors for word representation. In EMNLP. 1532–1543.
[29] Istvan Pillaszy, David Zibriczky, and Domonkos Tikk. 2010. Fast ALS-based

matrix factorization for explicit and implicit feedback datasets. In RecSys. 71–78.
[30] Sebastian Schelter, Venu Satuluri, and Reza Bosagh Zadeh. 2014. Factorbird-a Pa-

rameter Server Approach to Distributed Matrix Factorization. In NIPS Workshop
on Distributed Matrix Computations.

[31] Wei Tan, Liangliang Cao, and Liana Fong. 2016. Faster and Cheaper: Parallelizing

Large-Scale Matrix Factorization on GPUs. In HPDC. 219–230.
[32] Christina Te�ioudi, Faraz Makari, and Rainer Gemulla. 2012. Distributed Matrix

Completion. In ICDM. 655–664.

[33] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep

content-based music recommendation. In NIPS. 2643–2651.
[34] Samuel Williams, Andrew Waterman, and David Pa�erson. 2009. Roo�ine: An

Insightful Visual Performance Model for Multicore Architectures. Commun.
ACM 52, 4 (2009), 65–76.

[35] Xiaolong Xie, Wei Tan, Liana L Fong, and Yun Liang. 2017. CuMF SGD: Fast and

Scalable Matrix Factorization. In HPDC.
[36] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon. 2012. Scalable Coor-

dinate Descent Approaches to Parallel Matrix Factorization for Recommender

Systems. In ICDM. 765–774.

[37] Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S.V.N. Vishwanathan, and Inderjit S.

Dhillon. 2014. NOMAD: Non-locking, stOchastic Multi-machine algorithm for

Asynchronous and Decentralized matrix completion. In VLDB. 975–986.
[38] Yunhong Zhou, Dennis M. Wilkinson, Robert Schreiber, and Rong Pan. 2008.

Large-Scale Parallel Collaborative Filtering for the Net�ix Prize. In AAIM. 337–

348.

[39] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin. 2013. A fast

parallel SGD for matrix factorization in shared memory systems. In RecSys.
249–256.

http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://code.facebook.com/posts/861999383875667
http://jmlr.org/papers/v17/15-237.html
http://jmlr.org/papers/v17/15-237.html
http://dx.doi.org/10.1145/2893356
http://docs.nvidia.com/cuda/cublas/
http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemmbatched
http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemmbatched
http://www.nvidia.com/object/nvlink.html
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Memory optimization for high flops
	4 Approximate computing in solver
	4.1 Approximate solver with CG
	4.2 Use reduced precision

	5 Experiments
	5.1 Datasets
	5.2 Experiment setting
	5.3 Convergence speed: is cuMFals fast?
	5.4 Has cuMFals fully exploited GPU?
	5.5 ALS vs. SGD on GPUs
	5.6 Implicit matrix factorization

	6 Related Work
	6.1 Parallel SGD
	6.2 Parallel ALS and CCD

	7 Conclusion
	References

