
TrIMS: Transparent and Isolated Model Sharing for Low
Latency Deep Learning Inference in Function-as-a-Service

Abdul Dakkak (UIUC), Cheng Li (UIUC), Simon Garcia de Gonzalo (UIUC),
Jinjun Xiong (IBM Research), Wen-mei Hwu (UIUC)

Computer Science Department — University of Illinois at Urbana-Champaign
IBM-ILLINOIS Center for Cognitive Computing Systems Research

c3sr.com

Motivation

▪ Inference is latency sensitive
▪ A single feed forward pass through the DL graph
▪ Each layer operator is a function of the incoming

edges in the graph and the weights/constants
▪ In the long run, inference is more compute expensive

than training
▪ Layer weights are constant and can be shared across

processes

Motivation

AlexNet Model

▪ Model loading is the bottleneck in
end-to-end Deep Learning (DL)
inference

▪ Current model serving solutions are
suboptimal in terms of latency and
resource utilization

▪ DL models are shared extensively
across user pipelines

▪ Want to decouple model parameters
persistence from the inference
compute

Motivation

Use Case

Model Artifacts are stored in the cloud (e.g. AWS S3)
▪ Users either load models in their code (Suffer from model

loading overhead)
▪ Leverage the APIs exposed by some remote inference

server (persists the model inference process, wasting
resources if not used)

Current Model Serving

Model Artifacts are stored in the cloud (e.g. AWS S3)
▪ Users either load models in their code (Suffer from model

loading overhead)
▪ Leverage the APIs exposed by some remote inference

server (persists the model inference process, wasting
resources if not used)

Current Practice

Tasks are Shared Extensively in the Cloud

Tasks are Shared Extensively in the Cloud

Tasks are Shared Extensively in the Cloud

TrIMS Design

TrIMS Design
Two components:
● Model Resource Manager

(MRM)
● framework clients
Collocate with the user
process
Models from different
frameworks are managed in
separate namespaces

TrIMS Model Resource Manager
● gRPC for inter-process

communication
● cudaIpc* to share GPU

memory across processes

TrIMS Model Resource Manager
● Maps the models into

GPU memory, CPU
memory, local storage,
cloud storage

● Four-level “cache”
● When a cache level is full,

reclaim memory and evict
models

Other Design Philosophies
● User application rewriting

overhead
○ None

● Sharing Granularity
○ Model, layer or block

● Multi-GPU and Multi-Node
Support
○ Yes

● Inference Isolation and Fairness
○ Guaranteed

Inference Isolation
● User codes run in isolation

(separate processes or
containers)

● Self-contained
○ Crash or error
○ No interference

● Cloud providers have fine
grained control over each
process (or container)

Excessive Sharing due to Transfer Learning

Sharing Granularities

Sharing Granularities

Sharing Granularities

Sharing Granularities

Sharing Granularities

Sharing Granularities

Evaluation

Evaluation Setup
3 systems, 37 pre-trained popular
models and 8 large models

Name System1 System2 System3

CPU Intel Core i9-7900X Intel Xeon E5-2698 v4 IBM S822LC Power8 with
NVLink

GPU TITAN Xp P110 Tesla V100-PCIE Tesla P100-SXM2

Memory 32 GB 256 GB 512 GB

GPU Memory 12 GB 16 GB 16 GB

Cached Reads 8 GB/sec 10 GB/sec 27 GB/sec

Buffered Disk Reads 193.30 MB/sec 421.30 MB/sec 521.32 MB/sec

Results
Latency improvement on the end-to-end inference
● Up to 24X and 4.8X geomean speedup
Timing breakdown
● Model loading is no longer the bottleneck

Inference Latency

Latency Breakdown

Large Models

Large Models
● Common for medical

image analysis, NLP, time
series modeling, etc.

● Either input is large, or
want a large window of
memory

Workload Analysis

Workload Modeling
To understand the behavior of TrIMS on multi-tenant
oversubscribed system
Workload is selected from the 37 models following a Pareto
distribution
Design space of concurrency level, number of models to run
and MRM configurations on a system
Improve the overall batch execution time => throughput

Workload Modeling

Conclusion

Conclusion
● We showed how to remove model loading overhead from

DL inference
○ Enabling more novel compute acceleration and optimizations
○ Over Provisioning of resources in cloud setting

● Our technique is
○ Transparent to the user
○ Maintains isolation for security
○ Scalable for the cloud provider
○ Reduces cost by improving latency and throughput while

decreasing resource waste

github.com/rai-project/trims_mxnet
github.com/rai-project/trims-tools

