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Motivation



▪ Inference is latency sensitive
▪ A single feed forward pass through the DL graph
▪ Each layer operator is a function of the incoming 

edges in the graph and the weights/constants
▪ In the long run, inference is more compute expensive 

than training
▪ Layer weights are constant and can be shared across 

processes

Motivation



AlexNet Model



▪ Model loading is the bottleneck in 
end-to-end Deep Learning (DL) 
inference

▪ Current model serving solutions are 
suboptimal in terms of latency and 
resource utilization

▪ DL models are shared extensively 
across user pipelines

▪ Want to decouple model parameters 
persistence from the inference 
compute

Motivation



Use Case



Model Artifacts are stored in the cloud (e.g. AWS S3)
▪ Users either load models in their code (Suffer from model 

loading overhead)
▪ Leverage the APIs exposed by some remote inference 

server (persists the model inference process, wasting 
resources if not used)

Current Model Serving



Model Artifacts are stored in the cloud (e.g. AWS S3)
▪ Users either load models in their code (Suffer from model 

loading overhead)
▪ Leverage the APIs exposed by some remote inference 

server (persists the model inference process, wasting 
resources if not used)

Current Practice



Tasks are Shared Extensively in the Cloud



Tasks are Shared Extensively in the Cloud



Tasks are Shared Extensively in the Cloud



TrIMS Design



TrIMS Design
Two components: 
● Model Resource Manager 

(MRM)
● framework clients
Collocate with the user 
process
Models from different 
frameworks are managed in 
separate namespaces



TrIMS Model Resource Manager
● gRPC for inter-process 

communication
● cudaIpc* to share GPU 

memory across processes



TrIMS Model Resource Manager
● Maps the models into 

GPU memory, CPU 
memory, local storage, 
cloud storage

● Four-level “cache”
● When a cache level is full, 

reclaim memory and evict 
models



Other Design Philosophies
● User application rewriting 

overhead
○ None 

● Sharing Granularity
○ Model, layer or block

● Multi-GPU and Multi-Node 
Support
○ Yes

● Inference Isolation and Fairness
○ Guaranteed



Inference Isolation
● User codes run in isolation 

(separate processes or 
containers)

● Self-contained
○ Crash or error
○ No interference

● Cloud providers have fine 
grained control over each 
process (or container)



Excessive Sharing due to Transfer Learning



Sharing Granularities
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Evaluation



Evaluation Setup
3 systems, 37 pre-trained popular 
models and 8 large models

Name System1 System2 System3

CPU Intel Core i9-7900X Intel Xeon E5-2698 v4 IBM S822LC Power8 with 
NVLink

GPU TITAN Xp P110 Tesla V100-PCIE Tesla P100-SXM2

Memory 32 GB 256 GB 512 GB

GPU Memory 12 GB 16 GB 16 GB

Cached Reads 8 GB/sec 10 GB/sec 27 GB/sec

Buffered Disk Reads 193.30 MB/sec 421.30 MB/sec 521.32 MB/sec



Results
Latency improvement on the end-to-end inference
● Up to 24X and 4.8X geomean speedup
Timing breakdown
● Model loading  is no longer the bottleneck



Inference Latency



Latency Breakdown



Large Models



Large Models
● Common for medical 

image analysis, NLP, time 
series modeling, etc.

● Either input is large, or 
want a large window of 
memory





Workload Analysis



Workload Modeling
To understand the behavior of TrIMS on multi-tenant 
oversubscribed system
Workload is selected from the 37 models following a Pareto 
distribution
Design space of concurrency level, number of models to run 
and MRM configurations on a system
Improve the overall batch execution time => throughput



Workload Modeling



Conclusion



Conclusion
● We showed how to remove model loading overhead from 

DL inference
○ Enabling more novel compute acceleration and optimizations
○ Over Provisioning of resources in cloud setting

● Our technique is
○ Transparent to the user
○ Maintains isolation for security
○ Scalable for the cloud provider
○ Reduces cost by improving latency and throughput while 

decreasing resource waste 



github.com/rai-project/trims_mxnet
github.com/rai-project/trims-tools


