



# TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep Learning Inference in Function-as-a-Service

<u>Abdul Dakkak</u> (UIUC), Cheng Li (UIUC), Simon Garcia de Gonzalo (UIUC), Jinjun Xiong (IBM Research), Wen-mei Hwu (UIUC)

> Computer Science Department — University of Illinois at Urbana-Champaign IBM-ILLINOIS Center for Cognitive Computing Systems Research c3sr.com

#### **Motivation**







#### **Motivation**

- Inference is latency sensitive
- A single feed forward pass through the DL graph
- Each layer operator is a function of the incoming edges in the graph and the weights/constants
- In the long run, inference is more compute expensive than training
- Layer weights are constant and can be shared across processes



cognitive computing



 TABLE I

 MEMORY FOOTPRINT FOR EACH LAYER IN FIGURE 2.

#### **AlexNet Model**

| Index | Name         | Dimensions                         | Memory Footprint (MB) |
|-------|--------------|------------------------------------|-----------------------|
| 1     | conv1_bias   | 96                                 | 0.001                 |
| 2     | conv1_weight | $96 \times 3 \times 11 \times 11$  | 0.270                 |
| 3     | conv2_weight | $256 \times 48 \times 5 \times 5$  | 2.458                 |
| 4     | conv2_bias   | 256                                | 0.002                 |
| 5     | conv3_weight | $384 \times 256 \times 3 \times 3$ | 7.078                 |
| 6     | conv3_bias   | 384                                | 0.003                 |
| 7     | conv4_bias   | 384                                | 0.003                 |
| 8     | conv4_weight | $384 \times 192 \times 3 \times 3$ | 5.3086                |
| 9     | conv5_weight | $256\times192\times3\times3$       | 3.539                 |
| 10    | conv5_bias   | 256                                | 0.002                 |
| 11    | fc6_bias     | 4096                               | 0.033                 |
| 12    | fc6_weight   | $4096 \times 9216$                 | 301.990               |
| 13    | fc7_weight   | $4096 \times 4096$                 | 134.218               |
| 14    | fc7_bias     | 4096                               | 0.033                 |
| 15    | fc8_bias     | 1000                               | 0.008                 |
| 16    | fc8_weight   | $1000 \times 4096$                 | 32.768                |



Fig. 2. The DL inference graph for AlexNet [18]. The input dimensions and the number of bytes required by each layer is shown in Table I.





#### **Motivation**

- Model loading is the bottleneck in end-to-end Deep Learning (DL) inference
- Current model serving solutions are suboptimal in terms of latency and resource utilization
- DL models are shared extensively across user pipelines
- Want to decouple model parameters persistence from the inference compute



ILLINOIS



center for cognitive computing systems research









# **Current Model Serving**

Model Artifacts are stored in the cloud (e.g. AWS S3)

- Users either load models in their code (Suffer from model loading overhead)
- Leverage the APIs exposed by some remote inference server (persists the model inference process, wasting resources if not used)







#### **Current Practice**

Model Artifacts are stored in the cloud (e.g. AWS S3)

- Users either load models in their code (Suffer from model loading overhead)
- Leverage the APIs exposed by some remote inference server (persists the model inference process, wasting resources if not used)







#### **Tasks are Shared Extensively in the Cloud**









#### **Tasks are Shared Extensively in the Cloud**









#### **Tasks are Shared Extensively in the Cloud**



**Text Analysis** 





#### **TrIMS Design**







# **TrIMS Design**

#### Two components:

- Model Resource Manager (MRM)
- framework clients
- Collocate with the user process

Models from different frameworks are managed in separate namespaces



Fig. 4. Multiple processes can perform IPC requests to the *TrIMS* Model Resource Manager (MRM) server; for example  $Client_1$ ,  $Client_2$ , and  $Client_3$  are performing an Open request, while  $Client_4$  is performing a Close request. *TrIMS*'s MRM is responsible for loading and managing the placement of the models in GPU memory, CPU memory, or local disk.





# **TrIMS Model Resource Manager**

- gRPC for inter-process communication
- cudalpc\* to share GPU memory across processes



Fig. 5. When user code loads a model using the original framework API, instead of loading the model directly from disk, the corresponding *TrIMS* client sends an Open request with ModelRequest structure to *TrIMS* MRM, and receives a response of type ModelHandle, from which it constructs the compute graph with model weights. When user code unloads a model using the original framework API, instead of directly destroying the allocated memory, the *TrIMS* client sends out a Close request with ModelHandle and *TrIMS* MRM does the housekeeping.







# **TrIMS Model Resource Manager**

- Maps the models into GPU memory, CPU memory, local storage, cloud storage
- Four-level "cache"
- When a cache level is full, reclaim memory and evict models



Fig. 6. The logic for caching models on both GPU and CPU. The *TrIMS* client initiates the load model call to *TrIMS* MRM and gets back a pointer to GPU memory.





# **Other Design Philosophies**

- User application rewriting overhead
  - None
- Sharing Granularity
  - Model, layer or block
- Multi-GPU and Multi-Node Support
  - Yes
- Inference Isolation and Fairness
  - Guaranteed





# **Inference Isolation**

- User codes run in isolation (separate processes or containers)
- Self-contained
  - Crash or error
  - No interference
- Cloud providers have fine grained control over each process (or container)



Fig. 7. Cloud providers can use *TrIMS* MRM as a container plugin to provision running untrusted user functions while still leveraging model sharing. User code is executed within an isolated containers and can get the benefits of *TrIMS* without code modifications. Sharing occurs when the users utilize the same models as their peers — which is not uncommon in cloud settings using cloud provided APIs.







#### **Excessive Sharing due to Transfer Learning**



center for cognitive computing systems research









#### **Evaluation**







#### **Evaluation Setup**

# 3 systems, 37 pre-trained popular models and 8 large models

| Name                | System1             | System2               | System3                       |
|---------------------|---------------------|-----------------------|-------------------------------|
| CPU                 | Intel Core i9-7900X | Intel Xeon E5-2698 v4 | IBM S822LC Power8 with NVLink |
| GPU                 | TITAN Xp P110       | Tesla V100-PCIE       | Tesla P100-SXM2               |
| Memory              | 32 GB               | 256 GB                | 512 GB                        |
| GPU Memory          | 12 GB               | 16 GB                 | 16 GB                         |
| Cached Reads        | 8 GB/sec            | 10 GB/sec             | 27 GB/sec                     |
| Buffered Disk Reads | 193.30 MB/sec       | 421.30 MB/sec         | 521.32 MB/sec                 |

| ID | Name                     | # Layers | ILS  | MWMF |
|----|--------------------------|----------|------|------|
| 1  | AlexNet [18]             | 16       | 516  | 238  |
| 2  | GoogLeNet [31]           | 116      | 111  | 27   |
| 3  | CaffeNet [18]            | 16       | 512  | 233  |
| 4  | RCNN-ILSVRC13 [32]       | 16       | 479  | 221  |
| 5  | DPN68 [33]               | 361      | 122  | 49   |
| 6  | DPN92 [33]               | 481      | 340  | 145  |
| 7  | Inception-v3 [34]        | 472      | 257  | 92   |
| 8  | Inception-v4 [35]        | 747      | 399  | 164  |
| 9  | InceptionBN-v2 [36]      | 416      | 313  | 129  |
| 10 | InceptionBN-v3 [34]      | 416      | 142  | 44   |
| 11 | Inception-ResNet-v2 [35] | 1102     | 493  | 214  |
| 12 | LocationNet [37]         | 514      | 666  | 285  |
| 13 | NIN [38]                 | 24       | 131  | 29   |
| 14 | ResNet101 [39]           | 526      | 423  | 170  |
| 15 | ResNet101-v2 [39]        | 522      | 428  | 171  |
| 16 | ResNet152 [39]           | 777      | 548  | 231  |
| 17 | ResNet152-11k [39]       | 769      | 721  | 311  |
| 18 | ResNet152-v2 [39]        | 761      | 340  | 231  |
| 19 | ResNet18-v2 [39]         | 99       | 154  | 45   |
| 20 | ResNet200-v2 [39]        | 1009     | 589  | 248  |
| 21 | ResNet269-v2 [39]        | 1346     | 889  | 391  |
| 22 | ResNet34-v2 [39]         | 179      | 222  | 84   |
| 23 | ResNet50 [39]            | 268      | 270  | 98   |
| 24 | ResNet50-v2 [39]         | 259      | 275  | 98   |
| 25 | ResNeXt101 [40]          | 526      | 375  | 170  |
| 26 | ResNeXt101-32x4d [40]    | 522      | 378  | 170  |
| 27 | ResNeXt26-32x4d [40]     | 147      | 147  | 59   |
| 28 | ResNeXt50 [40]           | 271      | 222  | 96   |
| 29 | ResNeXt50-32x4d [40]     | 267      | 224  | 96   |
| 30 | SqueezeNet-v1.0 [41]     | 52       | 34   | 4.8  |
| 31 | SqueezeNet-v1.1 [41]     | 52       | 28   | 4.8  |
| 32 | VGG16 [42]               | 32       | 1228 | 528  |
| 33 | VGG16-SOD [43]           | 32       | 1198 | 514  |
| 34 | VGG16-SOS [44]           | 32       | 1195 | 513  |
| 35 | VGG19 [42]               | 38       | 1270 | 549  |
| 36 | WRN50-v2 [45]            | 267      | 758  | 264  |
| 37 | Xception [46]            | 236      | 244  | 88   |





#### Results

Latency improvement on the end-to-end inference

• Up to 24X and 4.8X geomean speedup

Timing breakdown

• Model loading is no longer the bottleneck







#### **Inference Latency**









# Latency Breakdown



Fig. 9. Detailed normalized times of operations with and without *TrIMS* on System 3 using the models in Table III. The duration for *TrIMS* is normalized to the end-to-end time of not using *TrIMS*. Model initialization is the time spent setting up the CUDA contexts for the model, initializing the the compute state, and (in the case of not using *TrIMS*) copying the weights to GPU memory. Compute is the time spent performing inference computation. Model sharing is the overhead introduced by using *TrIMS* and includes the gRPC communication and sharing GPU data using CUDA IPC. Through *TrIMS* we effectively eliminated model loading and data movement.



center for cognitive computing systems research



# Large Models







#### **Large Models**

- Common for medical image analysis, NLP, time series modeling, etc.
- Either input is large, or want a large window of memory

#### TABLE IV

LARGE MODELS WERE USED TO EVALUATE OUR METHOD. THE MODELS WERE GENERATED BY TAKING ALEXNET AND VGG16 AND SCALING THE NUMBER OF INPUT FEATURES. LARGE MODELS ARISE IN EITHER MEDICAL IMAGE ANALYSIS, NLP, OR TIME SERIES ANALYSIS WHERE DOWN-SAMPLING DECREASES THE ACCURACY OR THE NETWORK REQUIRES A LARGE WINDOW OF FEATURES TO GIVE ACCURATE RESULTS.

| ID | Name            | <b>Input Dimensions</b> | MWMF |
|----|-----------------|-------------------------|------|
| 1  | AlexNet-S1 [18] | $227 \times 227$        | 238  |
| 2  | AlexNet-S3 [18] | $454 \times 454$        | 770  |
| 3  | AlexNet-S3 [18] | $681 \times 681$        | 1694 |
| 4  | AlexNet-S4 [18] | 908 	imes 908           | 3010 |
| 5  | VGG16-S1 [42]   | $224 \times 224$        | 528  |
| 6  | VGG16-S2 [42]   | $448 \times 448$        | 1704 |
| 7  | VGG16-S3 [42]   | $672 \times 672$        | 3664 |
| 8  | VGG16-S4 [42]   | $896 \times 896$        | 6408 |









Fig. 10. large models in Table  $\overline{IV}$  are run to achieve the best case end-to-end time — when the model has been pre-loaded in GPU memory. The speedups are normalized to end-to-end running time of the model without *TrIMS*. The red dots show the percentage of time spent performing the compute. We see linear speedup for scaling, until the inference becomes compute bound.







#### Workload Analysis







# **Workload Modeling**

- To understand the behavior of TrIMS on multi-tenant oversubscribed system
- Workload is selected from the 37 models following a Pareto distribution
- Design space of concurrency level, number of models to run and MRM configurations on a system
- Improve the overall batch execution time => throughput







#### **Workload Modeling**



Fig. 11. We vary the percentage of number models (from Table III) run and we select from them following Pareto distribution (with X = 1 and l = 1). We Also vary the concurrency level ranging from 1 to 10. The geometric mean of the speedups is shown for both System 1 and 2.







#### Conclusion







### Conclusion

- We showed how to remove model loading overhead from DL inference
  - Enabling more novel compute acceleration and optimizations
  - Over Provisioning of resources in cloud setting
- Our technique is
  - Transparent to the user
  - Maintains isolation for security
  - Scalable for the cloud provider
  - Reduces cost by improving latency and throughput while decreasing resource waste











