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Motivation

= Inference is latency sensitive

= Asingle feed forward pass through the DL graph

= Each layer operator is a function of the incoming
edges in the graph and the weights/constants

= |n the long run, inference is more compute expensive
than training

= Layer weights are constant and can be shared across
processes
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TABLE 1

MEMORY FOOTPRINT FOR EACH LAYER IN FIGURE@

Index Name Dimensions Memory Footprint (MB)
AIeXN et MOdel 1 convl_bias 96 0.001
2 convl_weight 96 x3x 11 x 11 0.270

3 conv2_weight 256 x 48 x5x5 2.458

4 conv2_bias 256 0.002
S5 conv3_weight | 384 x 256 x3x3 7.078

6 conv3_bias 384 0.003

7 conv4_bias 384 0.003

8 conv4_weight | 384 x 192x3x3 5.3086

9 conv5_weight | 256 x 192 x 3 x 3 3.539
10 conv5_bias 256 0.002
11 fc6_bias 4096 0.033
12 fc6_weight 4096 x 9216 301.990
13 fc7_weight 4096 x 4096 134.218
14 fc7_bias 4096 0.033
15 fc8_bias 1000 0.008
16 fc8_weight 1000 x 4096 32.768

Fig. 2. The DL inference graph for AlexNet [18]. The input dimensions and the number of bytes required by each layer is shown in Table I
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Current Model Serving

Model Artifacts are stored in the cloud (e.g. AWS S3)

= Users either load models in their code (Suffer from model
loading overhead)

= |Leverage the APIs exposed by some remote inference
server (persists the model inference process, wasting
resources if not used)
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Current Practice

Model Artifacts are stored in the cloud (e.g. AWS S3)

= Users either load models in their code (Suffer from model
loading overhead)

= |Leverage the APIs exposed by some remote inference
server (persists the model inference process, wasting
resources if not used)
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Tasks are Shared Extensively in the Cloud

ORONGHEC

Detection Classifier Control Decision
Text Analysis Alignment Representation Speech Synth
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Tasks are Shared Extensively in the Cloud

User\ Detection Classmer Control Decision
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User 2
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Tasks are Shared Extensively in the Cloud

stop_words = read(‘stop_words.txt’).split(’\n’)
def process(input):
lines = input.split(‘\n’)
lines = [word for word in lines if !is_stop_word(word)]
\ return lines.join(‘\n’)
def is_stop_word(word):
return word in stop_words

\

Text Analysis
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TrIMS Design

Two components:

e Model Resource Manager
(MRM)

e framework clients

Collocate with the user
process

Models from different
frameworks are managed in
separate namespaces

Cloud
Storage

Download Model

TrIMS MRM _

MXNet/

AlexNet

Open
Open

Inception v4

VGG16 DenseNet

Caffe2/

AlexNet Inception v4

VGG16 DenseNet

Glove/

English French

Spanish Chinese

Client 1

Client 2

FastText/
|
| Close
Client 3
Client 4

Fig. 4. Multiple processes can perform IPC requests to the TrIMS Model
Resource Manager (MRM) server; for example Client, Client;, and Clients
are performing an Open request, while Clienty is performing a Close request.
TrIMS’s MRM is responsible for loading and managing the placement of the
models in GPU memory, CPU memory, or local disk.
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TrIMS Model Resource Manager

struct ModelHandle {
string id;

| |
. | string model_id; !

e gRPC for inter-process | e
| int sharing_granularity; | LA Stub Library
| |
| |
| |

TrIMS Client 1

voidx device_raw_ptr;

\

. . bytes ipc_handle; 4
Col I I I I I u n I Ca IO n } Layer[] layers; OpenRequest(ModelRequest)
P ——————————— J/
. C u d a I p C to S h a re G U TrIMS Model Resource Manager
Unmodified Unmodified
OpenResponse(ModelHandle) User Code User Code
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Fig. 5. When user code loads a model using the original framework API,
instead of loading the model directly from disk, the corresponding 7rIMS
client sends an Open request with ModelRequest structure to 7rIMS MRM,
and receives a response of type ModelHandle, from which it constructs
the compute graph with model weights. When user code unloads a model
using the original framework API, instead of directly destroying the allocated
memory, the 7rIMS client sends out a Close request with ModelHandle
and TrIMS MRM does the housekeeping.
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TrIMS Model Resource Manager

e Maps the models into
GPU memory, CPU

v
memory, local storage, DT . — )

CI O u d Sto rag e ________ AT e : < | —» Increment Ref Count

Y

e Four-level “cache” Q
e \When a cache level is full, i =

reclaim memory and evict lemerteny 7| e G eneny [T Copytoceo G

mOdeIS Fig. 6. The logic for caching models on both GPU and CPU. The TrIMS
client initiates the load model call to 7rIMS MRM and gets back a pointer to
GPU memory.

1
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Other Design Philosophies

e User application rewriting

overhead
o None

e Sharing Granularity
o Model, layer or block

e Multi-GPU and Multi-Node
Support

o Yes

e |[nference Isolation and Fairness
o Guaranteed
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e User codes run in isolation >[ J\

TrIMS MRM

(separate processes or Y

Container IPC

containers) i
e Self-contained e

TrIMS MXNet Framework Client

def serve_request(net, request):

o Crash or error

img_input = <<<process input>>>

img_labels = vision.classify(img_input)
: img_description = nlp.sentence_generate(img_label)
O N O I n te rfe re n Ce audio = audio.synthasize(img_description)
return audio
A -

° . .
C I O u d p rOVI d e rS h ave fl n e Fig. 7. Cloud providers can use 7r/IMS MRM as a container plugin to provision

1 running untrusted user functions while still leveraging model sharing. User

g ral ned Contr0| Over eaCh code is executed within an isolated containers and can get the benefits of

TrIMS without code modifications. Sharing occurs when the users utilize the

pro cess ( or Conta i N er) same models as their peers — which is not uncommon in cloud settings using

cloud provided APIs.

Dcentqr_for i E ILLINOI s
cognitive computing
systems research



Excessive Sharing due to Transfer Learning
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Sharing Granularities
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Sharing Granularities
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Sharing Granularities
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Sharing Granularities
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Sharing Granularities
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Granularities
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Evaluation Setup

3 systems, 37 pre-trained popular

models and 8 large models

Name System1 System2

CPU Intel Core i9-7900X Intel Xeon E5-2698 v4
GPU TITAN Xp P110 Tesla V100-PCIE
Memory 32GB 256 GB

GPU Memory 12GB 16 GB

Cached Reads 8 GB/sec 10 GB/sec

Buffered Disk Reads 193.30 MB/sec 421.30 MB/sec

center for
cognitive computing

System3

IBM S822L.C Power8 with
NVLink

Tesla P100-SXM2

512 GB

16 GB

27 GB/sec

521.32 MB/sec

ID Name # Layers ILS MWMF
1 AlexNet [18] 16 516 238
2 GoogLeNet [31] 116 111 27
3 CaffeNet [18] 16 512 233
4 RCNN-ILSVRC13 [32] 16 479 221
5 DPN68 [33] 361 122 49
6 DPNO92 [33] 481 340 145
7 Inception-v3 [34] 472 257 92
8 Inception-v4 [35] 747 399 164
9 InceptionBN-v2 [36] 416 313 129
10 | InceptionBN-v3 [34] 416 142 44
11 Inception-ResNet-v2 [35] 1102 493 214
12 | LocationNet [37] 514 666 285
13 | NIN [38] 24 131 29
14 | ResNetl01 [39] 526 423 170
15 | ResNetl01-v2 [39] 522 428 171
16 | ResNetl52 [39] 777 548 231
17 | ResNetl152-11k [39] 769 721 311
18 | ResNetl152-v2 [39] 761 340 231
19 | ResNetl18-v2 [39] 99 154 45
20 | ResNet200-v2 [39] 1009 589 248
21 | ResNet269-v2 [39] 1346 889 391
22 | ResNet34-v2 [39] 179 22 84
23 | ResNet50 [39] 268 270 98
24 | ResNet50-v2 [39] 259 275 98
25 | ResNeXt101 [40] 526 375 170
26 | ResNeXt101-32x4d [40] 522 378 170
27 | ResNeXt26-32x4d [40] 147 147 59
28 | ResNeXt50 [40] 271 222 96
29 | ResNeXt50-32x4d [40] 267 224 96
30 | SqueezeNet-v1.0 [41] 52 34 4.8
31 | SqueezeNet-vl.1 [41] 52 28 4.8
32 | VGGI6 [42] 32 1228 528
33 | VGG16-SOD [43] 32 1198 514
34 | VGG16-SOS [44] 32 1195 513
35 | VGGI19 [42] 38 1270 549
36 | WRNS0-v2 [45] 267 758 264
37 | Xception [46] 236 244 88
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Results

Latency improvement on the end-to-end inference
e Upto 24X and 4.8X geomean speedup

Timing breakdown

e Model loading is no longer the bottleneck
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Inference Latency
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Fig. 8. A representative sample of the models shown in Table [II are chosen and are run on the systems in Table II|to achieve (a) the best case end-to-end
time — when the model has been pre-loaded in GPU memory — and (b) the worst case end-to-end time — when the model misses both the CPU and GPU
persistence and needs to be loaded from disk. The speedups are normalized to end-to-end running time of the model without 7r/MS. The yellow dots show the
ideal speedup; the speedup achieved by removing any I/O and data-transfer overhead — keeping only the framework initialization and compute. For models 33
and 36, the achieved speedup is shown on the bar (white) and the ideal speedup is shown on top of the bar (black).
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Latency Breakdown
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Fig. 9. Detailed normalized times of operations with and without 7+rIMS on System 3 using the models in Table III. The duration for 7rIMS is normalized to
the end-to-end time of not using 7rIMS. Model initialization is the time spent setting up the CUDA contexts for the model, initializing the the compute state,
and (in the case of not using 7rIMS) copying the weights to GPU memory. Compute is the time spent performing inference computation. Model sharing is the
overhead introduced by using 7r/MS and includes the gRPC communication and sharing GPU data using CUDA IPC. Through TrIMS we effectively eliminated
model loading and data movement.
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Large Models

Il ILLINOIS



Large Models

e Common for medical
Image analysis, NLP, time
series modeling, etc.

e Eitherinputis large, or
want a large window of
memory

center for

TABLE 1V
LARGE MODELS WERE USED TO EVALUATE OUR METHOD. THE MODELS
WERE GENERATED BY TAKING ALEXNET AND VGG 16 AND SCALING THE
NUMBER OF INPUT FEATURES. LARGE MODELS ARISE IN EITHER MEDICAL
IMAGE ANALYSIS, NLP, OR TIME SERIES ANALYSIS WHERE
DOWN-SAMPLING DECREASES THE ACCURACY OR THE NETWORK
REQUIRES A LARGE WINDOW OF FEATURES TO GIVE ACCURATE RESULTS.

ID Name Input Dimensions MWMF
1 AlexNet-S1 [18] 227 x 227 238
2 AlexNet-S3 [18] 454 x 454 770
3 AlexNet-S3 [18] 681 x 681 1694
4 AlexNet-S4 [18] 908 x 908 3010
5 VGG16-S1 [42] 224 x 224 528
6 VGG16-S2 [42] 448 x 448 1704
7 VGG16-S3 [42] 672 x 672 3664
8 VGG16-S4 [42] 896 x 896 6408

|| 0|
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Fig. 10. large models in Table Eare run to achieve the best case end-to-end time — when the model has been pre-loaded in GPU memory. The speedups
are normalized to end-to-end running time of the model without 7r/MS. The red dots show the percentage of time spent performing the compute. We see linear
speedup for scaling, until the inference becomes compute bound.
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Workload Analysis
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Workload Modeling

To understand the behavior of TrIMS on multi-tenant
oversubscribed system

Workload is selected from the 37 models following a Pareto
distribution

Design space of concurrency level, number of models to run
and MRM configurations on a system

Improve the overall batch execution time => throughput
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Workload Modeling
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Fig. 11. We vary the percentage of number models (from Table III) run and we select from them following Pareto distribution (with X =1 and / = 1). We
Also vary the concurrency level ranging from 1 to 10. The geometric mean of the speedups is shown for both System 1 and 2.
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Conclusion
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Conclusion

e \We showed how to remove model loading overhead from
DL inference

o Enabling more novel compute acceleration and optimizations
o Over Provisioning of resources in cloud setting

e Our technique is
o Transparent to the user
Maintains isolation for security
Scalable for the cloud provider
Reduces cost by improving latency and throughput while
decreasing resource waste

o O O
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github.com/rai-project/trims_mxnet
github.com/rai-project/trims-tools
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