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Abstract—Deep neural networks (DNNs) have become core
computation components within low latency Function as a
Service (FaaS) prediction pipelines. Cloud computing, as the
de-facto backbone of modern computing infrastructure, has
to be able to handle user-defined FaaS pipelines containing
diverse DNN inference workloads while maintaining isolation
and latency guarantees with minimal resource waste. The
current solution for guaranteeing isolation and latency within
FaaS is inefficient. A major cause of the inefficiency is the need
to move large amount of data within and across servers. We
propose TrIMS as a novel solution to address this issue. TrIMS
is a generic memory sharing technique that enables constant
data to be shared across processes or containers while still
maintaining isolation between users. TrIMS consists of a persis-
tent model store across the GPU, CPU, local storage, and cloud
storage hierarchy, an efficient resource management layer that
provides isolation, and a succinct set of abstracts, application
APIs, and container technologies for easy and transparent
integration with FaaS, Deep Learning (DL) frameworks, and
user code. We demonstrate our solution by interfacing TrIMS
with the Apache MXNet framework and demonstrate up to 24×
speedup in latency for image classification models, up to 210×
speedup for large models, and up to 8× system throughput
improvement.

I. INTRODUCTION

Today, many business-logic and consumer applications

rely on Deep Learning(DL) inferences as core components

within their application pipelines. These pipelines tend to be

deployed to the cloud through serverless computing, since

they abstract away low-level details such as system setup

and DevOps while providing isolation, decentralization, and

scalability, all the while being more cost-effective than ded-

icated servers. User code which defines the pipeline (acting

as glue code) is commonly deployed through Function as a

Service (FaaS) [1], [2], [5], [7] onto the cloud and is made

available through HTTP endpoints. Since FaaS executes

arbitrary user code, the host system must execute code in

isolation — through virtual machines (VMs) or containers.

While serverless is an emerging and compelling comput-

ing paradigm for event-driven cloud applications, use cases

of the current FaaS offerings are limited. Currently, server-

less functions run as short-lived VMs or containers, and thus

are not ideal for long running jobs. FaaS functions are also
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Figure 1: Percentage of time spent in model loading, infer-

ence computation, and image preprocessing for online DL

inference (batchsize = 1) using CPU and GPU for MXNet,

Caffe, Caffe2, and TensorFlow on an IBM S822LC with

Pascal GPUs. The speedup of using GPU over CPU for

inference compute is shown between the pie charts. Infer-

ence time for all frameworks is dominated by model loading

except for small models. For TensorFlow, GPU initialization

overhead impacts the end-to-end time and achieved speedup.

unable to work efficiently with data or distributed computing

resources [19], [24], thus are not ideal for functions that

require large data.

Recent work has proposed extensions to FaaS infrastruc-

ture to expand its usage within DL domains and facilitate
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Figure 2: The DL inference graph for AlexNet [23]. The input dimensions and the memory footprint are shown in Table I.

it to leverage heterogeneous hardware. In [19], the authors

advocate for code fluidity, where user functions is shipped

to the data rather than the data being downloaded by the

code. The advantages for this is three-fold. a It avoids the

overhead of copying data over slow interconnects (such as

network). b Leveraging heterogeneous hardware becomes

attractive if data overhead is reduced and isolation is guar-

anteed. Finally, c , since user functions which use the same

data are routed to the same system, it exposes an opportunity

for sharing constant data across functions.

Both a and b allow you to minimize data copy over-

head and accelerate the computation using heterogeneous

hardware. Yet, after removing the inter-node data copy

overhead, intra-node data movement becomes a contributing

factor to latency. This is even more true for heterogeneous

devices, since data must be copied onto the device. This

makes heterogeneous devices, such as GPUs, less attractive

for accelerating latency-sensitive inference — even though

they would offer a significant compute speed advantage, as

shown in Figure 1. For c , we observe that DL models

are shared extensively across user pipelines. For example,

Google reported that 41 natural translation models can

accommodate over 75% of their translation requests in [4].

Because model parameters are constant, we can use data

sharing across Faas functions to share DL models within a

model catalog, hence eliminating the model loading over-

head, decreasing the end-to-end latency, and reducing the

memory footprint (since there is only one instance of a

model in memory for many users) for DL inferences.

In this paper, we propose a Transparent and Isolated

Model Sharing (TrIMS) scheme to leverage the data sharing

opportunity introduced by collocating user code with model

catalogs within FaaS — it minimizes model loading and

data movement overhead while maintaining the isolation

constraints and increasing hardware resource utilization. We

also introduce the TrIMS’s model resource manager (MRM)

layer which offers a multi-tiered cache for DL models to

be shared across user FaaS functions. By decreasing model

loading and data movement overhead, TrIMS decreases

latency of end-to-end model inference, making inference on

GPU a viable FaaS target. TrIMS also increases memory

efficiency for cloud data centers while maintaining accuracy.

In this paper we focus on online prediction within latency

sensitive FaaS functions. Specifically, this paper makes the

following contributions:

• We characterize the overhead for DL model inference

across popular DL frameworks on both CPUs and GPUs

and identify model loading as the bottleneck.

• We propose TrIMS to mitigate the model loading over-

head faced by collocating user code with model cata-

logs within FaaS, and increase the hardware resource

utilization by sharing DL models across all levels of

the memory hierarchy in the cloud environment —

GPU, CPU, local storage, and remote storage. To our

knowledge, this work is the first to propose sharing DL

models across isolated FaaS functions.

• We implement TrIMS within Apache MXNet [11] and

evaluate the impact on GPU inference performance for

a representative set of models and systems. We show

that TrIMS provides 1.12× – 24× speedup on small

(less than 600MB) models and 5× – 210× speedup

on large (up to 6GB) models and is within 20% of

ideal speedup (with ideal being that model loading and

data movement taking no time), and gives 8× system

throughput improvement.

• TrIMS eliminates a substantial part of the non-compute

components of the end-to-end latency, making DL

model inference on GPU and other novel compute

accelerators more viable.

• We architect TrIMS so that it can be easily integrated

with existing FaaS systems and DL frameworks without

user code changes. TrIMS is designed to be compatible

with existing framework usage patterns, and requires

minimal modifications for framework developers.

• While we use DL inference as the motivating appli-

cation, TrIMS is not restricted to DL. TrIMS can be

generalized to any application where one can share

data across FaaS functions, be it a common database,

knowledge base, or dataset.

II. DEEP LEARNING INFERENCE OVERHEAD

A single DL inference is much less computationally

intensive than training, making it more sensitive to the

data loading and deserialization overhead. A DL inference

compute graph is a DAG composed of a set of network

layers. Each computational layer is parameterized through

weights and constants. The model parameters along with the

compute topology identify the model 1. Each layer operator

is a function of the incoming edges in the graph and the

weights/constants. An inference pass iterates through the

layers of a compute graph and applies the layer operators to

its input. Figure 2 shows the inference compute graph for

1Throughout this paper, sharing a layer means that we are sharing both
the weights and constants that parameterize the layer.
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Index Name Dim MF (MB)
1 conv1 bias 96 0.001
2 conv1 weight 96×3×11×11 0.270
3 conv2 weight 256×48×5×5 2.458
4 conv2 bias 256 0.002
5 conv3 weight 384×256×3×3 7.078
6 conv3 bias 384 0.003
7 conv4 bias 384 0.003
8 conv4 weight 384×192×3×3 5.3086
9 conv5 weight 256×192×3×3 3.539
10 conv5 bias 256 0.002
11 fc6 bias 4096 0.033
12 fc6 weight 4096×9216 301.990
13 fc7 weight 4096×4096 134.218
14 fc7 bias 4096 0.033
15 fc8 bias 1000 0.008
16 fc8 weight 1000×4096 32.768

Table I: Memory footprint (MF) for each layer in Figure 2.

AlexNet [23] and Table I lists the dimension and memory

footprint for each layer.

For GPUs, the compute graph and associated weights

are loaded and copied to GPU memory ahead of the com-

putation. Memory for intermediate layer outputs also need

to be allocated. AlexNet, for example, requires 516MB of

extra GPU memory to store the intermediate results during

the inference process. These intermediate outputs are not

constant and cannot be shared, since they depend on the

user’s input. However, layer weights are constant and can be

shared across processes. For AlexNet, this results in sharing

238MB of constant data.

When compute is optimized, the overhead of model

loading is magnified. Figure 1 shows that GPU outperforms

the CPU in terms of compute, thus making model loading

a bottleneck for end-to-end inference. Without data transfer

overhead the NVIDIA Tesla V100 GPU using Tensor Cores

can achieve 70× higher throughput on CNNs and 130×
higher throughput on RNNs compared to a high-end CPU

server [8]. Reducing the data movement overhead makes

GPU a more appealing option for DL inference.

To mitigate the model loading overhead, cloud services

and previous work [10], [14], [27] persist model catalogs in

memory or perform inference in batches. These strategies

require knowledge of the model requests, have potential

resource waste since the system resources are persisted

within processes for models even when they are not used, or

increase the latency of requests if batching the inferences.

III. CURRENT PREDICTION PIPELINES IN FAAS

Function as a Service (FaaS) is a cost-effective way for

users to deploy functions or pipelines that are executed

within the cloud. Users define prediction pipelines that use

models they deployed or ones found within the model

catalog. The pipelines are then mapped to a fabric of

containers — used to maintain software stack separation,

virtualize system resources, and provide isolation — that run

on physical machines. Unlike traditional cloud execution,

the functions executed in a FaaS are short lived and are

priced on a per-invocation basis (with function execution

time and resource utilization being the main cost factors).

Because cloud providers use a per-API call and per-resource

utilization price model, resource waste affects the cloud

user’s total cost of ownership.
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Figure 3: Multiple processes can perform IPC requests to

the TrIMS Model Resource Manager (MRM) server; for

example Client1, Client2, and Client3 are performing an

Open request, while Client4 is performing a Close request.

TrIMS’s MRM is responsible for loading and managing the

placement of the models in GPU memory, CPU memory, or

local disk.

In a cloud setting DL models are shared extensively

across user functions, for example: between the 4 user

functions shown in Figure 2. Based on this observation, we

propose TrIMS to eliminate such model loading overhead

and hardware resource waste, while maintaining resource

utilization efficiency and decreasing inference latency in user

processes. TrIMS achieves this by folding “private copies”

of the model into a shared copy under the hood. This is

performed by decoupling the model persistence from the

user-code execution — enabling model sharing, isolation,

and low latency inference.

IV. TRIMS DESIGN

FaaS systems employ a server-worker architecture. The

server (or controller) is a central server that orchestrates

function execution on remote worker nodes running FaaS

agents. Each FaaS agent within the FaaS system accepts

user functions from the controller and launches containers

on the worker node. A worker node is a multi-tenant system

— accepting multiple functions from the controller — it is

common for service providers to oversubscribe the worker

nodes. TrIMS integrates with FaaS systems and consists of

two components: 1 a Model Resource Manager (MRM)

that runs on the worker node and 2 DL framework client

that runs within the FaaS container launched by the FaaS
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agent.

The MRM manages the model resources resident in the

system memory and abstracts away the model loading from

framework clients. TrIMS-enabled frameworks communicate

with MRM through inter-process communication (IPC) and

maintain their existing APIs. Since TrIMS enabled frame-

work follows the original framework’s API and semantics

— returning the same data structures as the unmodified

framework — users can leverage TrIMS transparently with-

out code modification.

A. TrIMS Model Resource Manager (MRM)

TrIMS’s MRM is a model server daemon that performs

model management and placement. MRM maintains a

database of models, addressing them using namespaces, with

framework as well as model name and version being used to

distinguish frameworks and models. The MRM placement

manager then maps the models into either GPU memory,

CPU memory, local storage, or cloud storage. The four

levels are analogous to the traditional CPU cache hierarchy.

Because of this, we will simply refer to these four levels

hierarchies as “cache” in the rest of this paper whenever

there is no ambiguity.

For inter-process communication, TrIMS uses gRPC [17]

to send and receive messages between the MRM and its

clients. TrIMS leverages the CUDA runtime’s cudaIpc* to

share GPU memory across processes. MRM abstracts away

the model management, exposing two API functions to be

used by the clients: trims::open and trims::close
to load and close a model. MRM maintains a reference count

for each model to determine the number of users currently

TrIMS Model Resource Manager

Model 
Resource
Database

gRPC
Server

TrIMS Client 1

gRPC
Stub

Caffe 
Library

TrIMS Client 2

gRPC
Stub

MXNet 
Library

struct ModelRequest {
  string model_name;
  string path;
  ReqConfig config;
}

struct ModelHandle {
  string id;
  string model_id;
  int64 byte_count;
  int sharing_granularity;
  void* device_raw_ptr;
  bytes ipc_handle;
  Layer[] layers;
} OpenRequest(ModelRequest)

OpenResponse(ModelHandle)

CloseRequest(ModelRequest)

CloseResponse(Void)

Unmodified 
User Code

Unmodified 
User Code

Figure 4: When user code loads a model using the original

framework API, instead of loading the model directly from

disk, the corresponding TrIMS client sends an Open request

with ModelRequest structure to the MRM, and receives a

response of type ModelHandle, from which it constructs

the compute graph with model weights. When user code

unloads a model, then instead of destroying the allocated

memory, the TrIMS client sends out a Close request with

ModelHandle and the MRM does the housekeeping.

using the shared model and it’s up to the MRM to determine

the behavior once the reference count is 0. The API is shown

in Figure 4.

Model Database 
(TrIMS MRM)

Load Model from Disk and 
Copy to CPU Memory

Copy Model to GPUReclaim GPU Memory Allocate GPU Memory

Increment Ref Count

Return GPU Memory PtrModel Fits in
GPU

LOAD MODEL RPC REQUEST

GPU MISS / CPU MISS

GPU MISS / CPU HIT

NO YES

GPU HIT

ITERATE

Figure 5: The logic for caching models on both GPU and

CPU. The TrIMS client initiates the load model call to TrIMS
MRM and gets back a pointer to GPU memory.

1) Loading Models: When loading a model, MRM per-

forms shape inference on the model to estimate its memory

footprint when running on GPU. Shape inference is a simple

arithmetic computation performed by any framework to

determine the tensor dimensions for a model. After shape

inference, MRM follows the state diagram shown in Figure 5

and needs to handle three cases:
GPU cache hit — Model is persistent in GPU memory:

MRM increments the model’s reference count and creates a

shared memory handle from the device memory owned by

MRM. The handle is then returned to the framework client.

Model eviction is triggered when the intermediate results for

a model is greater than the available free memory.
GPU cache miss / CPU cache hit — model is persistent

in CPU memory: The server queries the current memory

utilization of the GPU to see if the model can be copied to

GPU memory. If it can, then GPU memory is allocated and

copied; if not, then some memory needs to be reclaimed —

entering the memory reclamation procedure.
CPU and GPU cache miss — model is not persistent

in memory: If the data is not on local storage, then MRM

downloads the model from the cloud. If the data is on disk,

then MRM loads the data from disk using the framework’s

serializer. Pinned memory is allocated on the CPU and the

model weights is copied to it. MRM then follows the same

logic as when the data is persistent in CPU memory.
2) Reclaiming Memory and Evicting Models: Memory

reclamation is performed when the memory space for MRM

at a specific cache level is full. Which model to evict to

reclaim memory is determined by the eviction policy. TrIMS
supports a pluggable set of common eviction policies such as

least recently used(LRU) and least commonly used (LCU).
For the CPU and GPU level caches, model eviction cannot

interfere with running user’s code. For example, models

within the MRM database are not cannot be reclaimed if they
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are in use; i.e. the reference count of a model is non-zero.

Evicting models that is currently being used (effectively

freeing GPU memory that’s being used) causes undefined

behavior in the user’s code.

3) Unloading Models: When a TrIMS framework client

unloads a model (or the user process exists), a model unload

request is sent to MRM. MRM looks up the model in the

database and decrements its reference count. By default

MRM does not free resources for models that have a zero

reference count (not currently used), but MRM can be

configured to eagerly reclaim memory for these models.

B. TrIMS Frameworks

MRM can handle requests from multiple TrIMS-enabled

frameworks, managing their weights (which have different

data layouts) in separate namespaces. Shown in Figure 4,

when a TrIMS framework performs a model load request, the

framework’s name and version are sent along with the re-

quest. The MRM can then perform the model unmarshalling

from disk using the format supported by the framework.

To enable TrIMS in a framework, the functions to load

and unload models need to be modified to perform gRPC
requests to MRM. Since, each framework may have its own

serialization format, support for the model format, to enable

unmarshalling the data from disk to memory, needs to be

added to MRM. With these changes, any type of network

supported by the framework (CNN, RNN, etc.) and any

compute pattern is automatically supported by TrIMS.

User application rewriting overhead: Since MRM does

not modify the framework’s API, code that is linked with

a TrIMS-enabled framework does not require any change

and TrIMS works with existing Python, Java, R, or code

developed in other languages. This is an attractive feature,

since the benefits of TrIMS can be leveraged by cloud

provider transparently from the user.

Sharing Granularity: TrIMS supports fixed-size block,

layer, and model level sharing granularity. Sub-model level

sharing granularity is interesting when considering layers or

memory across models. For example, models trained using

transfer learning [33] share the frozen layer weights. Block

level granularity can also be used to share fixed-size buffers.

Multi-GPU and Multi-Node Support: Multi-GPU is usu-

ally used when performing batched inference [9], [10].

TrIMS inherently supports the multi-GPUs by leveraging

Unified Memory (UM) [3]. Support for Multi-GPU sharing

can also be performed without relying on UM by making the

TrIMS framework client query the device ID of the current

GPU context when a model is loaded. The framework client

can then send the device ID along with the request. TrIMS
MRM would then load the model into the GPU with that

device ID. When a request loads a model on a GPU and the

requested model is persistent on another GPU, MRM will

perform GPU peer-to-peer memory copy if supported.

import mxnet as mx
from mlprovider import vision, nlp, audio

def serve_request(net, request):
  img_input       = <<<process input>>>
  img_labels      = vision.classify(img_input)
  img_description = nlp.sentence_generate(img_label)
  audio           = audio.synthasize(img_description)
  return audio

TrIMS MXNet Framework Client

TrIMS MRM

User 1 Function

Container IPCUser 1 Container

vision models language 
models audio models

CPU Memory GPU Memory Local Storage Cloud Storage

text models

User 3 Container

User 2 Container

Figure 6: Cloud providers can use TrIMS MRM as a con-

tainer plugin to provision running untrusted user functions

while still leveraging model sharing. User code is executed

within an isolated containers and can get the benefits of

TrIMS without code modifications. Sharing occurs when the

users utilize the same models as their peers.

Multiple independent instances of TrIMS MRM can be

loaded for multi-node support and an off-the-shelf task

scheduling and load balancing middleware can be used to

route and load balance inference requests. TrIMS can be

setup to advertise the models that have already been loaded

by users and the current system load to the load balancer.

C. Inference Isolation and Fairness

To enable seamless container isolation, TrIMS provides

a Docker [26] volume plugin that allows service providers

to provision the container with a communication link to

the TrIMS MRM. The TrIMS MRM process runs in the

host system with a link for frameworks to communicate

with it across container boundaries. Figure 6 shows how

untrusted user code can be run on a multi-tenant system

while maintaining isolation. The figure shows how users can

use DL models to create an image to audio pipeline. The user

uses the cloud provided vision, text, and audio models via a

library that is part of a model catalog. All user code executes

within a container that communicates with the MRM via the

container’s IPC mechanism.

V. IMPLEMENTATION

The experiments reported in this paper are based on an

implementation of TrIMS on top of the Apache MXNet

(github.com/rai-project/trims mxnet) — a popular machine

learning framework. The TrIMS MRM includes serialization

code from MXNet to unmarshal MXNet models from disk.

We also modify the MXNet framework to integrate it with

TrIMS — keeping the MXNet APIs unchanged. Communi-

cation between the MXNet framework client and the MRM

uses Google’s gRPC [17] with the packets encoded using

Protocol Buffers [6].
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To validate the efficiency and generality of TrIMS, we fol-

low a few principles throughout our implementation — even

if disregarding some would have given us better speedup:

Backward Compatible: The implementation needs to

work with the existing framework’s code base and language

bindings, i.e. we should be able to run preexisting MXNet

code written in Python or Scala with no modifications.

Simple and Minimal: The implementation needs to be

simple and minimize the modification to the framework code

base. Our modifications adds only 1500 lines of code (less

than 0.5% of the MXNet code base) to the framework (800

lines for the server and 700 lines for the client).

Configurable: The implementation has knobs to tweak

everything from the eviction strategy of memory sharing,

the amount of memory that can be used, whether to enable

TrIMS, the levels of cache to enable, etc.

Fast, Concurrent and Scalable: We communicate using

gRPC and use efficient data structures [20] for the MRM

database to make the serving fast and concurrent. The

memory sharing strategy in TrIMS is scalable and can handle

large amount of load.

A. TrIMS Apache MXNet Framework

We implement TrIMS on top of the Apache MXNet

framework by modifying the MXPredCreate and

MXPredFree in the MXNet C predict API’s. When TrIMS
is enabled, trims::open and trims::close are in-

voked during the predictor creation and deletion.

Like most open-source DL Frameworks, MXNet is op-

timized for training and not inference. We apply a set of

optimizations to the original MXNet to improve the infer-

ence latency. The optimizations avoid eager initialization of

CUDA resources, remove cuDNN algorithm selection for

backward propagation, and simplify the random resource

generation. With our optimizations, MXNet is 6× faster for

inference on average than the vanilla MXNet for the suite of

models we use. We use the modified MXNet as our baseline

during evaluation.

B. GPU Memory Sharing

We perform GPU memory sharing using the CUDA’s

cudaIPC* runtime functions. For Pre-Volta GPUs, the

CUDA IPC mechanism utilizes CUDA MPS — an inter-

mediate user process where the memory allocations are

performed. This means that all CUDA operations end up

serialized and executed within the same CUDA MPS context

— enabling different processes to share the same GPU

virtual address space (VAS). For Volta GPUs, NVIDIA

introduced a new feature to allow contexts to share page-

table mappings. This makes it possible for user processes

to run using different contexts while still sharing memory.

For CUDA 9.2, CUDA MPS is still invoked to keep shared

allocations and communicate across them, but, with the

exception of a handful of functions, most CUDA operations

are performed without IPC communication.

Because sharing may serialize to use CUDA MPS, one

slight disadvantage of CUDA IPC functions is that they

have a measurable overhead. This can become a bottleneck.

When sharing models at layer granularity, networks with

large number of layers, such as ResNet269-v2, have high

overhead. We remedy this by having enabling one to set the

sharing granularity at groups of layer or whole models.

The CUDA IPC overhead is measurable, and we can

quantify whether using TrIMS is beneficial statically using

the empirical formula: ρ = b÷ q− n× (o+ s), where n is

the number of objects to share (when the sharing granularity

is at the model level, this value is 1; when the granularity

is at the layer, this value is the number of layers); o is the

overhead of sharing CUDA memory via CUDA IPC and s
is the overhead of obtaining a CUDA device pointer from

a shared CUDA IPC handle; b is the number of bytes the

model occupies on disk; and q is the disk I/O bandwidth.

These constants can be computed once at system startup

and cached to be used by TrIMS. If ρ is positive, then its

magnitude is correlated to the speedup one gets using TrIMS.

This equation can be used within the TrIMS framework to

determine at runtime whether to call TrIMS to share a model

or not and at what granularity to share the model.

VI. EVALUATION

We evaluate TrIMS on 3 systems (shown in Table II)

using 37 (shown in Table III) pre-trained models and 8 large

models (shown in Table IV). The systems selected represent

different types of instances that are currently provisioned

in the cloud. System 3 uses the NVLink bus [15], [32]

which allows up to 35GB/s transfer between CPU and GPU.

System 3 is used as proxy for understanding our proposed

method’s behavior on high end cloud instances and next

generation interconnects currently being deployed on HPC

and cloud systems [34]. Multi-GPU results are similar to the

single-GPU results and are omitted for simplicity.

We used image processing models as a representative

workload because these are currently the most plentiful in

FaaS pipelines. TrIMS is agnostic to the compute patterns

of a network and the analysis would apply to other types

of networks such as: RNNs, word embeddings, or matrix

factorization. The selected 37 pre-trained image processing

models, shown in Table III, are based on their popularity in

both research and usage. Some of the networks have variants.

These are used to simulate user trained models — the

same compute networks structure can have different weights.

Large models are used to show how TrIMS performs with

increasing model sizes.

Throughout this section we compare our performance

within a FaaS setting against ideal (where the model loading

and data movement takes no time, and is faster than model

persistence) and use the end-to-end inference with model
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Name CPU GPU Memory GPU Memory Cached Reads Buffered Disk Reads
System 1 Intel Core i9-7900X TITAN Xp P110 32 GB 12 GB 8 GB/sec 193.30 MB/sec

System 2 Intel Xeon E5-2698 v4 Tesla V100-PCIE 256 GB 16 GB 10 GB/sec 421.30 MB/sec

System 3 IBM S822LC Power8 w/ NVLink Tesla P100-SXM2 512 GB 16 GB 27 GB/sec 521.32 MB/sec

Table II: We evaluate TrIMS on 3 systems which represent both cloud offerings and consumer desktop system configurations

currently used for DL inference. We use the Linux hdparm tool to measure the cached disk reads.
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Figure 7: A representative sample of the models shown in Table III are chosen and are run on the systems in Table II to

achieve (a) the best case end-to-end time — when the model has been pre-loaded in GPU memory — and (b) the worst

case end-to-end time — when the model misses both the CPU and GPU persistence and needs to be loaded from disk. The

speedups are normalized to end-to-end running time of the model without TrIMS. The yellow dots show the ideal speedup;

the speedup achieved by removing any I/O and data-transfer overhead — keeping only the framework initialization and

compute. For models 33 and 36, the achieved speedup is shown on the bar (white) and the ideal speedup is shown on top

of the bar (black).

loading overhead as the base line, since that’s what is

currently employed by FaaS.

A. Latency Improvement

We measure the end-to-end inference of MXNet with and

without TrIMS – omitting input processing time for clarity.

Figure 7 shows the achieved speedup on a representative set

of the models compared against MXNet that does not utilize

TrIMS. We show two scenarios: (a) our best case (when there

is a GPU cache hit) and (b) our worst case (when the cache

misses both the CPU and GPU).

For best case analysis (Figure 7a), the server needs to

create the CUDA IPC handles and the framework client

needs to embed the GPU device pointers within the frame-

work’s container. This introduces overhead, however it is

within 20% of the ideal — ideal defined as the time for

inference where model loading or deserialization times set to

zero. We see that latency speedup increases with model size,

and is inversely proportional to the system’s data movement

bandwidth and model’s compute complexity.

For small models, where the I/O overhead is very low, for

example SqueezeNet (which has a 5MB memory footprint),

we observe only marginal speedup (1.04×). These models

are designed to have a small footprint — targeting edge

devices — and are rarely used within the cloud. For state-

of-the-art networks, such as VGG16-SOD, we observe 24×
speedup on System 1. Even with fast disk and the NVLink

interconnect, which mitigates I/O overhead by offering

greater data movement bandwidth, System 3 achieves 6×
speedup for VGG16-SOD.

For the worst case analysis (Figure 7b), the MRM needs to

load the data from disk, persist the model on the CPU, copy

the data to the GPU, and send the GPU memory handles to

the client. Although we get a slow down, this case assumes

there is no model sharing across pipelines, and therefore

uncommon in cloud setting.

B. Speedup Breakdown
To understand where the new bottlenecks are for the

inference using TrIMS, we look at System 3 where we

achieve the lowest speedup and measure the (a) model

initialization, (b) time to deserialize and copy the model

data to GPU, (c) overhead introduced by TrIMS to share a

model, and (d) time to perform inference computation. As

can be seen in Figure 8, without using TrIMS an average of

86% of the time is spent loading and initializing the model

while only 7% is spent performing computation. When using

TrIMS we eliminate the model loading from disk and remove
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Figure 9: Large models in Table IV are run to achieve the

best case end-to-end time — when the model has been pre-

loaded in GPU memory. The speedups are normalized to

end-to-end running time of the model without TrIMS. The

red dots show the percentage of time for pure computation.

the need to perform GPU memory copies. Even though we

introduce overhead, we still gain a 4.8× geometric mean

speedup.

C. Large Model Evaluation

We evaluate our method using large models which are

common for medical analysis, NLP, and time series mod-

eling. We generated the large models by starting with the

regular AlexNet and VGG16 networks, maintaining their

compute graph, and rescaling the input dimensions to gen-

erate enlarged model. Table IV shows the 8 models selected

for evaluation, their memory footprint, and their input sizes.

Figure 9 shows that by removing model loading overhead,

inference on large models becomes compute bound and gives

an advantage to faster GPUs. We also observe that TrIMS
increases the memory efficiency of the GPU. Without TrIMS,

two inferences using model 8 cannot be run concurrently,

since they overrun the GPU memory. TrIMS avoids multiple

private copies of the 6.4GB model on the same machine,

enabling concurrent runs of large models.

D. Workload Modeling

Finally, we perform workload modeling to understand

the behavior of TrIMS when used within a multi-tenant

oversubscribed system senario. The workload is selected

from the 37 small models shown in Table III following a

Pareto distribution. Since the models cannot all be resident

on the GPU at the same time — in total having 2× GPU

memory footprint — the TrIMS MRM needs to exercise the

ID Name # Layers ILS MWMF
1 AlexNet [23] 16 516 238

2 GoogLeNet [30] 116 111 27

3 CaffeNet [23] 16 512 233

4 RCNN-ILSVRC13 [16] 16 479 221

5 DPN68 [12] 361 122 49

6 DPN92 [12] 481 340 145

7 Inception-v3 [31] 472 257 92

8 Inception-v4 [29] 747 399 164

9 InceptionBN-v2 [22] 416 313 129

10 InceptionBN-v3 [31] 416 142 44

11 Inception-ResNet-v2 [29] 1102 493 214

12 LocationNet [35] 514 666 285

13 NIN [25] 24 131 29

14 ResNet101 [18] 526 423 170

15 ResNet101-v2 [18] 522 428 171

16 ResNet152 [18] 777 548 231

17 ResNet152-11k [18] 769 721 311

18 ResNet152-v2 [18] 761 340 231

19 ResNet18-v2 [18] 99 154 45

20 ResNet200-v2 [18] 1009 589 248

21 ResNet269-v2 [18] 1346 889 391

22 ResNet34-v2 [18] 179 222 84

23 ResNet50 [18] 268 270 98

24 ResNet50-v2 [18] 259 275 98

25 ResNeXt101 [36] 526 375 170

26 ResNeXt101-32x4d [36] 522 378 170

27 ResNeXt26-32x4d [36] 147 147 59

28 ResNeXt50 [36] 271 222 96

29 ResNeXt50-32x4d [36] 267 224 96

30 SqueezeNet-v1.0 [21] 52 34 4.8

31 SqueezeNet-v1.1 [21] 52 28 4.8

32 VGG16 [28] 32 1228 528

33 VGG16-SOD [39] 32 1198 514

34 VGG16-SOS [38] 32 1195 513

35 VGG19 [28] 38 1270 549

36 WRN50-v2 [37] 267 758 264

37 Xception [13] 236 244 88

Table III: The small models are popular models used in

literature and is used as proxy models that offer a wide

variety of sizes and computational complexity. Image clas-

sification models are used since they are the most commonly

used. Both internal layer sizes (ILS) and the model weights

memory footprint (MWMF) are shown in megabytes. The

number of models is chosen to be 2x larger than the available

16 GB memory on Systems 2 and 3.

model reclamation and eviction procedure. Because of lim-

ited space, we only present the results for the LRU eviction

strategy, but our observations are valid for other eviction

strategies. Note that persistent model serving platforms are

unable to oversubscribe the system, and this is one of the

benefits of TrIMS.
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10. The iso-curves show the geometric mean of the speedups for Systems 1, 2, and 3.

ID Name Input Dims MWMF
1 AlexNet-S1 [23] 227×227 238

2 AlexNet-S3 [23] 454×454 770

3 AlexNet-S3 [23] 681×681 1694

4 AlexNet-S4 [23] 908×908 3010

5 VGG16-S1 [28] 224×224 528

6 VGG16-S2 [28] 448×448 1704

7 VGG16-S3 [28] 672×672 3664

8 VGG16-S4 [28] 896×896 6408

Table IV: Large models were used to evaluate our method.

The models were generated by taking AlexNet and VGG16

and scaling the number of input features. Large models arise

in either medical image analysis, NLP, or time series analysis

where down-sampling decreases the accuracy or the network

requires a large window of features to give accurate results.

Figure 10 shows the level iso-efficiency curves for the

geometric mean speedup 2 as we vary the concurrency level

and number of models to run. We can see that even in

an oversubscribed setting, we can still service 10 clients

concurrently, reduce the overall batch execution time (by

up to 8×), while incurring only a 20% latency penalty for

each request. This slowdown is due to the cost of evicting

models to accommodate the larger memory footprint, caus-

ing subsequent usage of the model to miss the GPU cache.

For all three systems, we can observe an over-subscription

sweet spot, where the percent of models and number of the

concurrent request can be increased while the batch execu-

tion is preserved to a speedup of 1×. All systems show a

sweet spot when 40% of models are actively being requested.

For system 1 and 3, the number of concurrent requests can

be increased to 4, and system 2 the same number improves

to 6. The difference in the over subscription sweet spot

can be explained due to the different compute capabilities

between the systems. System 1 and 3 are provision with

Pascal generation GPUs while system 2 has the latest Volta

2We measure the speedup value using the geometric mean across the
99% latency speedup of each model.

generation. Essentially, because we are successful in moving

the inference bottleneck from I/O to compute, the sweet

spot is determined by the available computing resources. In

practice, cloud providers can perform sensitivity analysis to

determine the number of models hosted on each server and

the number of concurrent requests to service based on the

service’s target requirements.

VII. CONCLUSION

Collocating compute with model serving within FaaS

overcomes the data transfer barrier but suffers from high

intra-node data copy latency. We propose TrIMS to mitigate

the major source of intra-node data copy latency — the

model loading overhead — and enable building complex DL

pipelines using latency sensitive FaaS functions. We do so

by decoupling compute from model persistence and lever-

aging model sharing across user pipelines. TrIMS moves the

bottleneck of DL model inference to compute, thus making

GPU acceleration more appealing and making specialized

novel inference architectures more tractable.
TrIMS was evaluated on three systems that represent

current cloud system offerings. We used 45 DL models and

show a speedup of up to 24× for small models and up to

210× for large models. When running concurrent inference,

we can increase the overall system throughput by up to 8×.

Our methodology, when applied to DL frameworks, offers

advantages to both cloud providers and users. The isolation

along with the significant memory reduction through model

sharing enable cloud providers to over-provision hardware

resources, thus decreasing the total cost of ownership. The

benefits of TrIMS to the cloud providers can be passed down

to the users in the form of latency or cost reduction.
TrIMS is a generic memory sharing technique that can be

used when computation requires large number of constant

parameters to be in situ on the CPU or GPU, while still

maintaining isolation between users. As such, the proposed

method can be easily generalized to any application or
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algorithm that spans multiple processes and requires large

amount of constant data resources. While we motivated our

work with deep learning, other types of applications such

as image processing, physical simulation, or databases can

benefit from our approach.
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